
Edge Detection

Computer Vision (CS 543 / ECE 549)

University of Illinois

Derek Hoiem

02/02/12

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li

Magritte,

“Decalcomania”

Last class

• How to use filters for
– Matching

– Compression

• Image representation with pyramids

• Texture and filter banks

Issue from Tuesday

• Why not use an ideal filter?

Attempt to apply ideal filter in frequency domain

Answer: has infinite spatial extent, clipping results in ringing

Denoising

Additive Gaussian Noise

Gaussian

Filter

Smoothing with larger standard deviations suppresses noise, but also blurs the

image

Reducing Gaussian noise

Source: S. Lazebnik

Reducing salt-and-pepper noise by
Gaussian smoothing

3x3 5x5 7x7

Alternative idea: Median filtering

• A median filter operates over a window by
selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman

Median filter

• What advantage does median filtering have
over Gaussian filtering?
– Robustness to outliers, preserves edges

Source: K. Grauman

Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

• MATLAB: medfilt2(image, [h w])

Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median

Other non-linear filters

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest
pixels)

• Max or min filter (ordfilt2)

• Bilateral filtering (weight by spatial distance and intensity
difference)

http://vision.ai.uiuc.edu/?p=1455 Image:

Bilateral filtering

http://vision.ai.uiuc.edu/?p=1455

Bilateral filters

• Edge preserving: weights similar pixels more

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Original Gaussian Bilateral

spatial similarity (e.g., intensity)

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Today’s class

• Detecting edges

• Finding straight lines

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Closeup of edges

Closeup of edges

Closeup of edges

Closeup of edges

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Intensity profile Intensity

Gradient

With a little Gaussian noise

Gradient

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d


f

g

f * g

)(gf
dx

d


Source: S. Seitz

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
)(

Derivative theorem of convolution

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Derivative of Gaussian filter

• Is this filter
separable?

* [1 0 -1] =

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth

Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to

the true edges
• the detector must return one point only for each

true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the

boundary
– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei

Canny edge detector

• This is probably the most widely used edge
detector in computer vision

• Theoretical model: step-edges corrupted by
additive Gaussian noise

• Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

input image (“Lena”)

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation

theta = atan2(-gy, gx)

Non-maximum suppression for each
orientation

At q, we have a

maximum if the

value is larger than

those at both p and

at r. Interpolate to

get these values.

Source: D. Forsyth

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

• imx2 = imresize(im, 2, interpolation_type)

• ‘nearest’
– Copy value from nearest known
– Very fast but creates blocky edges

• ‘bilinear’

– Weighted average from four nearest known
pixels

– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area
– Slower, visually appealing, may create

negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Hysteresis thresholding

• Check that maximum value of gradient
value is sufficiently large

– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

Effect of  (Gaussian kernel spread/size)

Canny with Canny with original

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz

Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection

Natural Boundaries…

http://www.eecs.berkeley.edu/Research/Projects/C

S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

Figure from Fowlkes

Brightness

Color

Texture

Combined

Human

Results

Human (0.95)

Pb (0.88)

Results

Human

Pb

Human (0.96)

Global Pb Pb (0.88)

Human (0.95)

Pb (0.63)

Human (0.90)

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects

/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Global pB boundary detector

Figure from Fowlkes

State of edge detection

• Local edge detection is mostly solved

– Intensity gradient, color, texture

• Some methods to take into account longer
contours, but could probably do better

• Poor use of object and high-level information

Finding straight lines

Finding line segments using connected
components

1. Compute canny edges
– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:
– find connected components for edge pixels with directions in {d-1, d,

d+1}

4. Compute straightness and theta of edgelets using eig of x,y
2nd moment matrix of their points

5. Threshold on straightness, store segment

    
     




















2

2

yyx

yxx

yyx

yxx




M)eig(],[Μλv

))2,1(),2,2(2(atan vv

12 /conf

Larger eigenvector

2. Canny lines  … straight edges

Homework 1

• Due Feb 14, but try to finish by Tues (HW 2
will take quite a bit more time)

http://www.cs.illinois.edu/class/sp12/cs543/hw/CV_Spring12_HW1.pdf

http://www.cs.illinois.edu/class/sp12/cs543/hw/CV_Spring12_HW1.pdf
http://www.cs.illinois.edu/class/sp12/cs543/hw/CV_Spring12_HW1.pdf

Things to remember

• Canny edge detector =
smooth  derivative  thin 
threshold  link

• Pb: learns weighting of gradient,
color, texture differences

• Straight line detector =
canny + gradient orientations 
orientation binning  linking 
check for straightness

Next classes: Correspondence and Alignment

• Detecting interest points

• Tracking points

• Object/image alignment and registration

– Aligning 3D or edge points

– Object instance recognition

– Image stitching

