Edge Detection

Magritte, "Decalcomania"

Computer Vision (CS 543 / ECE 549)
University of Illinois
Derek Hoiem

Last class

- How to use filters for
 - Matching
 - Compression

Image representation with pyramids

Texture and filter banks

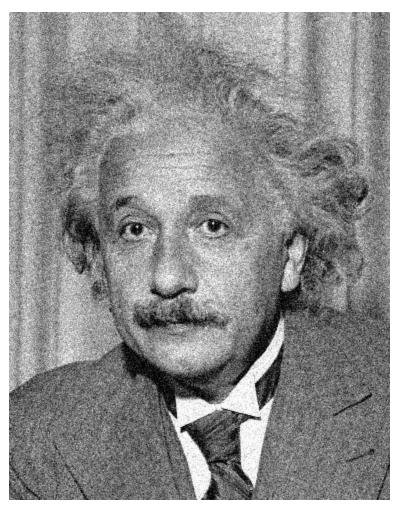
Issue from Tuesday

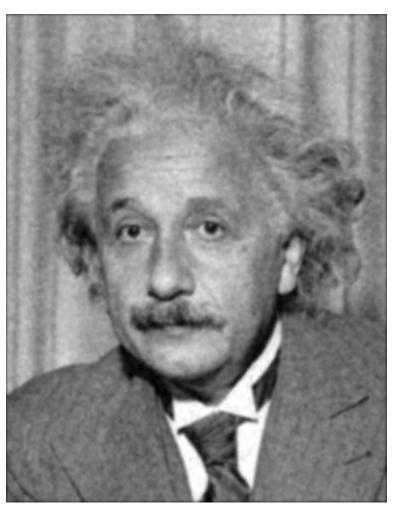
Why not use an ideal filter?

Answer: has infinite spatial extent, clipping results in ringing

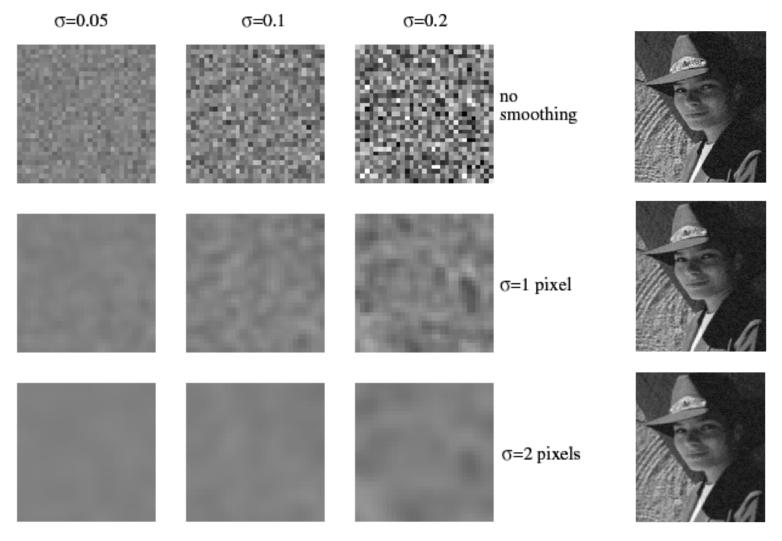
Attempt to apply ideal filter in frequency domain

Denoising





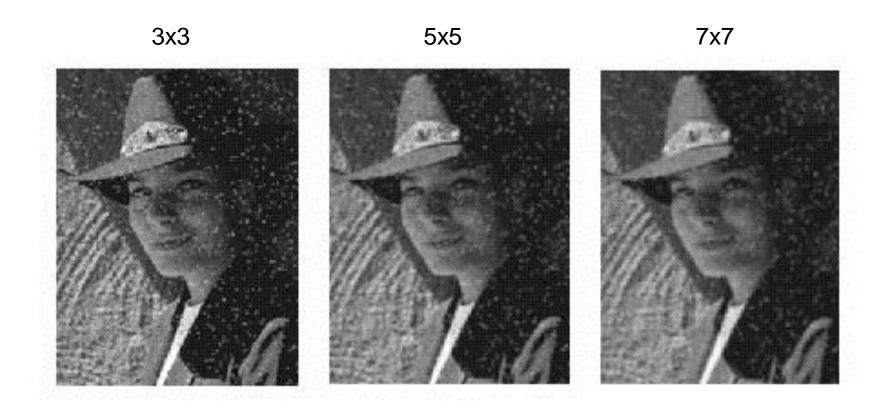
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

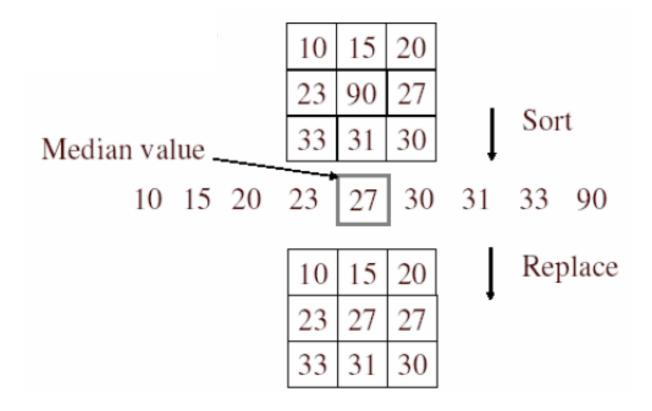
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

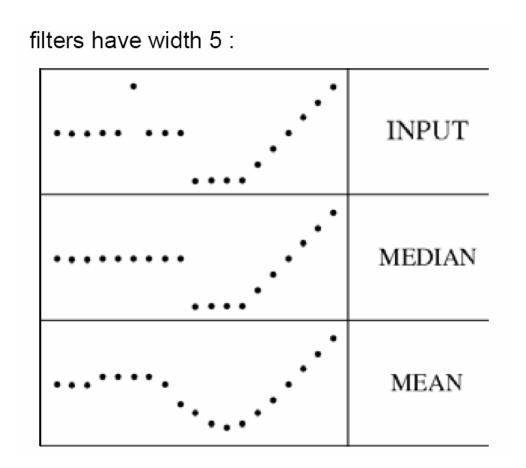
 A median filter operates over a window by selecting the median intensity in the window



Is median filtering linear?

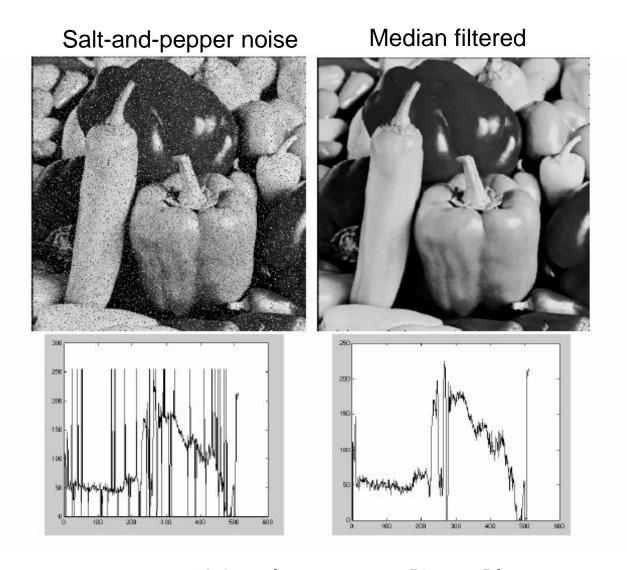
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers, preserves edges



Source: K. Grauman

Median filter



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering

3x3 5x5 7x7 Gaussian Median

Other non-linear filters

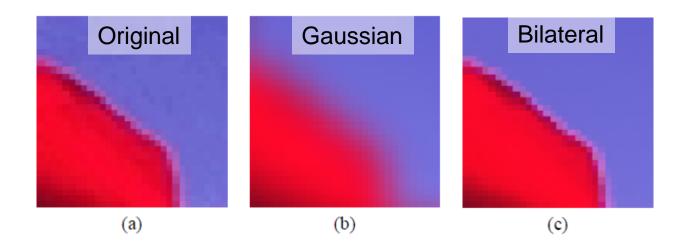
- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Max or min filter (ordfilt2)
- Bilateral filtering (weight by spatial distance and intensity difference)

Bilateral filtering

Bilateral filters

Edge preserving: weights similar pixels more

$$I_{\mathbf{p}}^{\mathbf{b}} = \frac{1}{W_{\mathbf{p}}^{\mathbf{b}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
with $W_{\mathbf{p}}^{\mathbf{b}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$



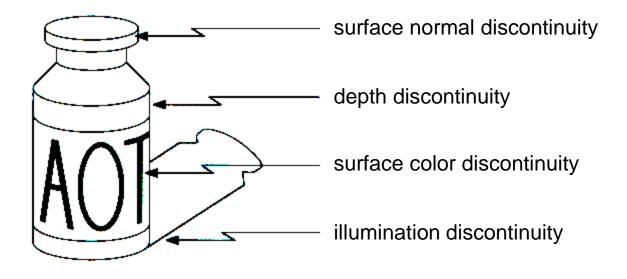
Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Today's class

Detecting edges

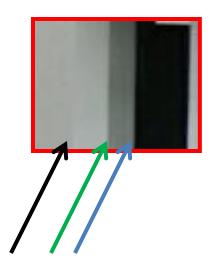
Finding straight lines

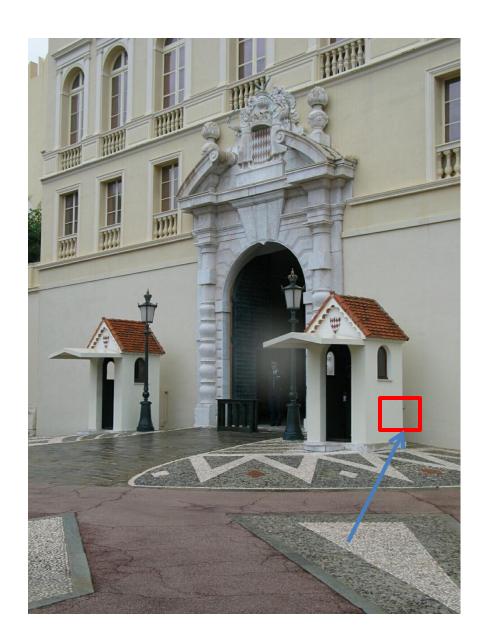
Origin of Edges

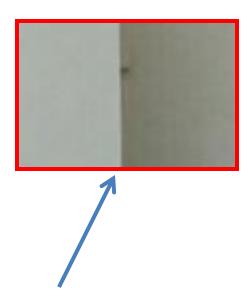


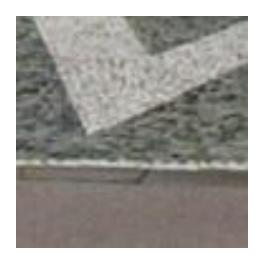
Edges are caused by a variety of factors

Source: Steve Seitz



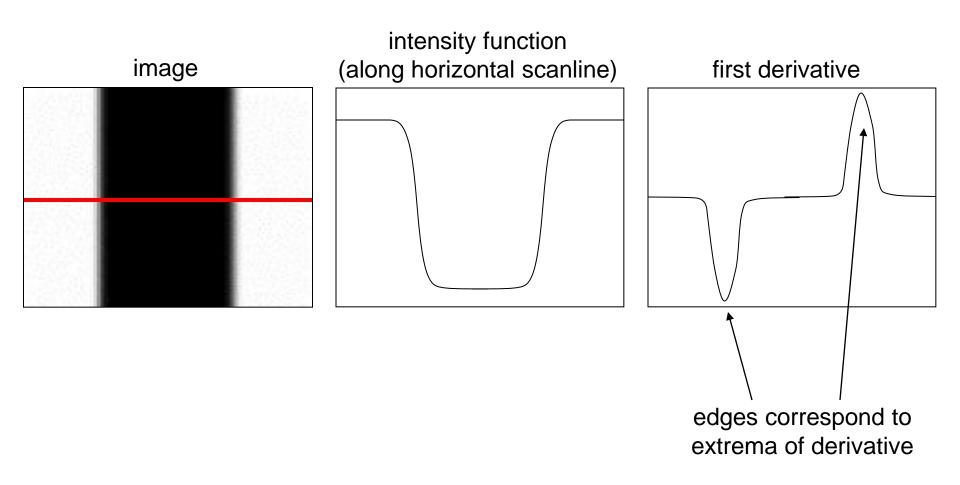




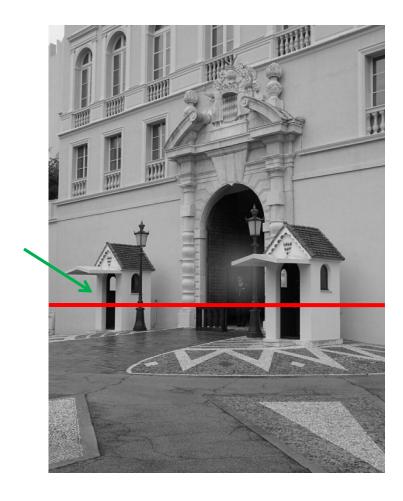


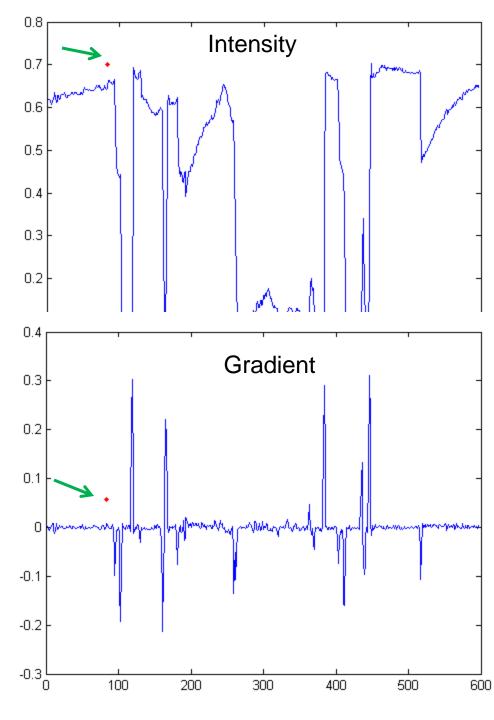
Characterizing edges

An edge is a place of rapid change in the image intensity function

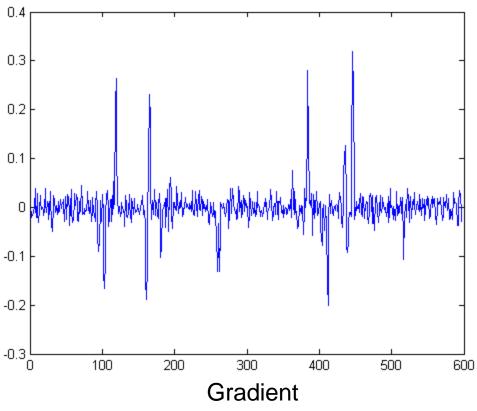


Intensity profile



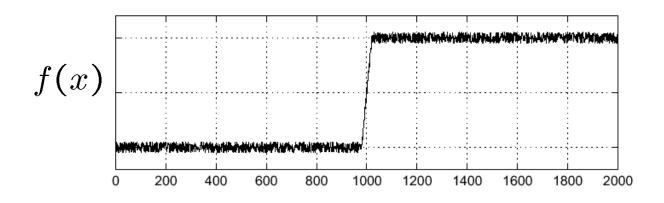


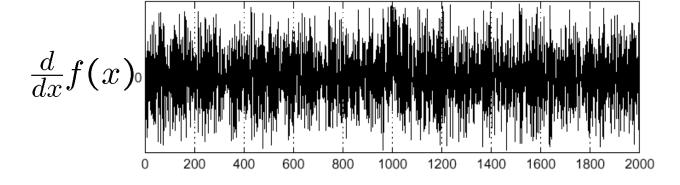
With a little Gaussian noise



Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal



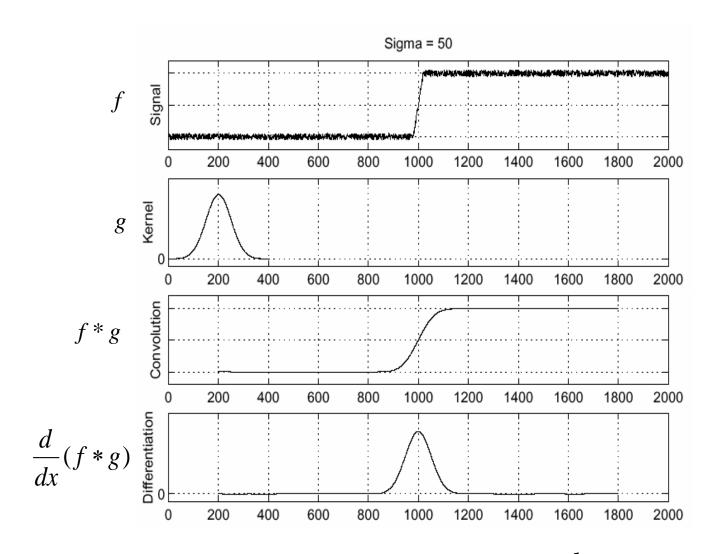


Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

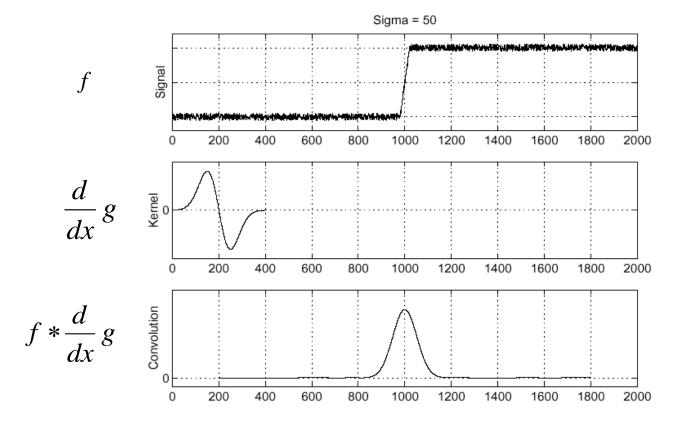


• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

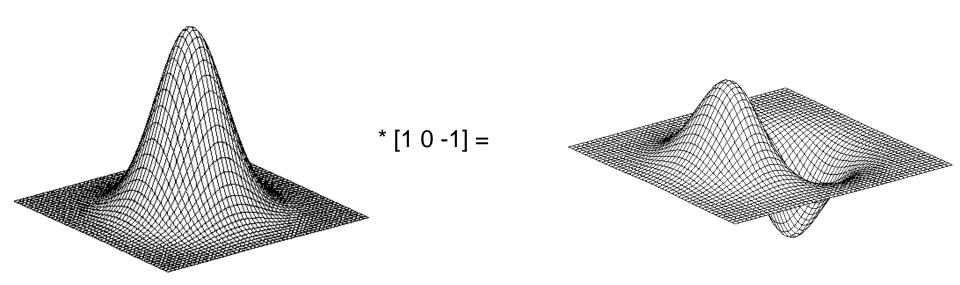
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:



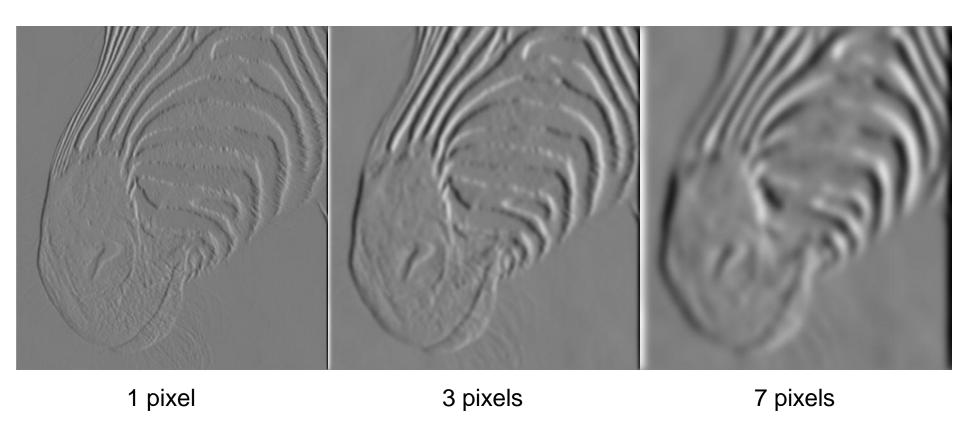
Source: S. Seitz

Derivative of Gaussian filter



• Is this filter separable?

Tradeoff between smoothing and localization



 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

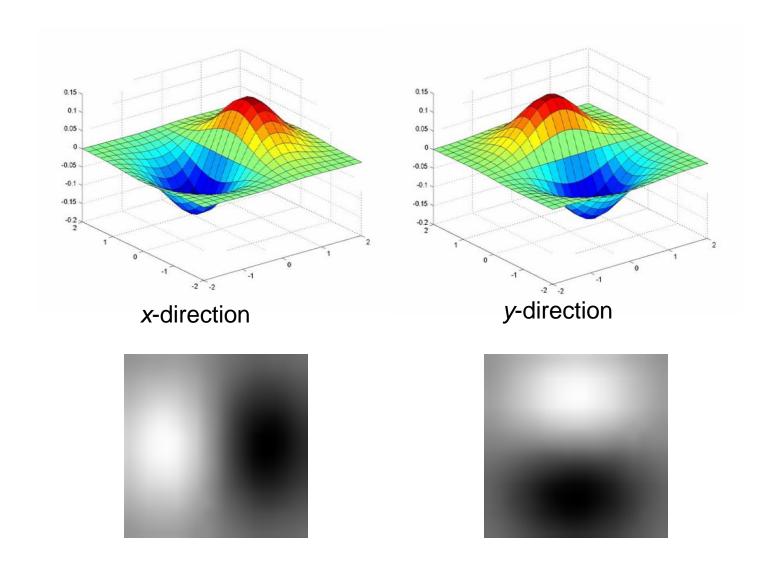
- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Example

input image ("Lena")

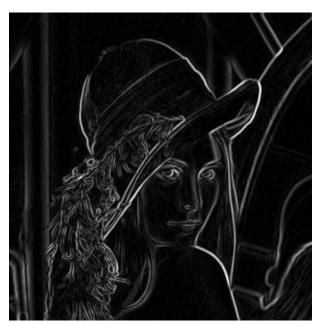
Derivative of Gaussian filter



Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian



Gradient Magnitude

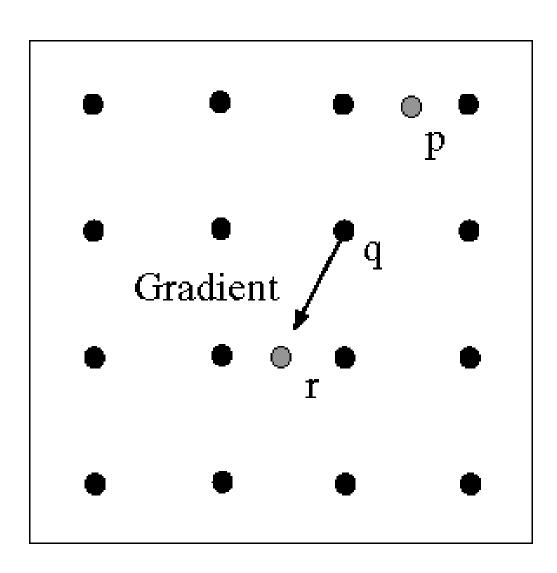
Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

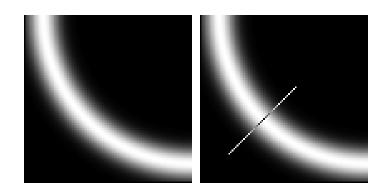


theta = atan2(-gy, gx)

Non-maximum suppression for each orientation



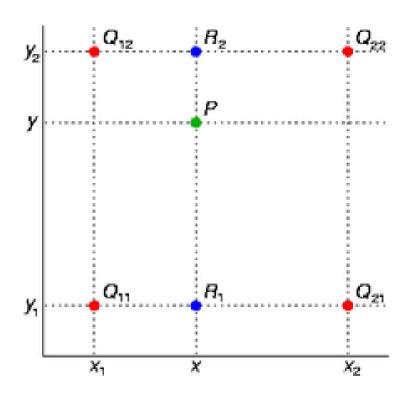
At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

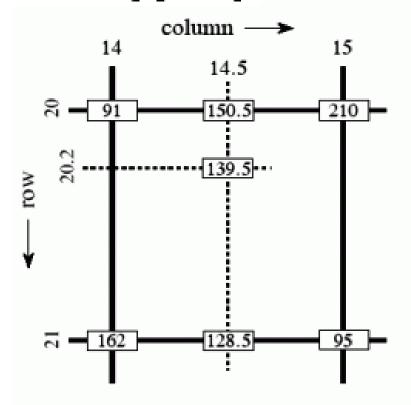


Source: D. Forsyth

Bilinear Interpolation

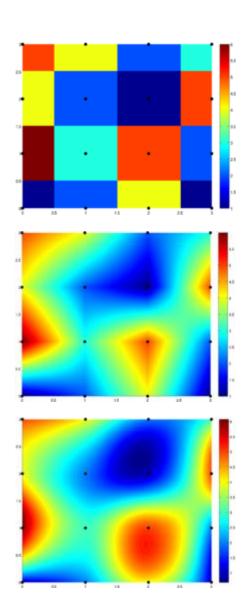
$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$$





Sidebar: Interpolation options

- imx2 = imresize(im, 2, interpolation_type)
- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area
 - Slower, visually appealing, may create negative pixel values



Before Non-max Suppression

After non-max suppression

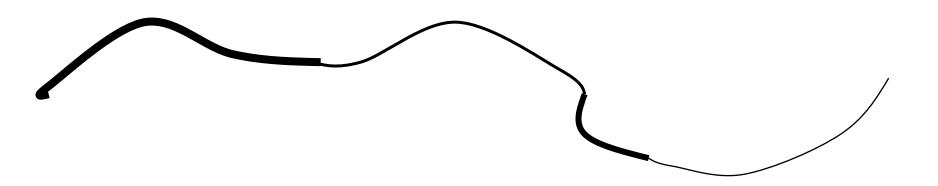
Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.



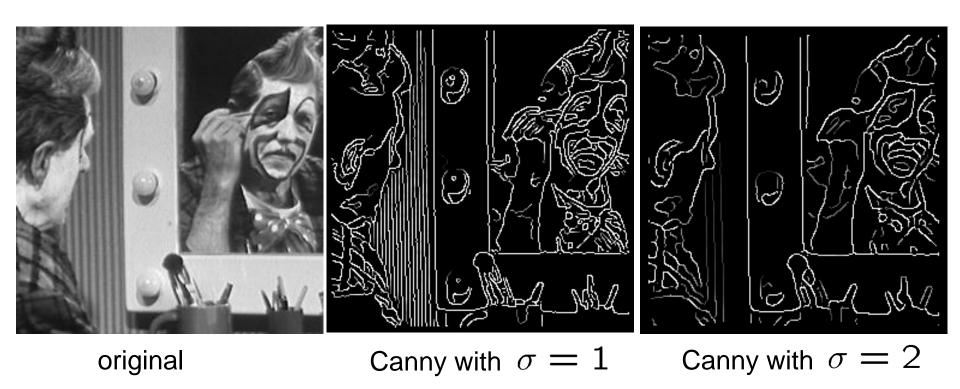
Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

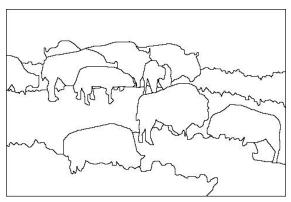
- large σ detects large scale edges
- small σ detects fine features

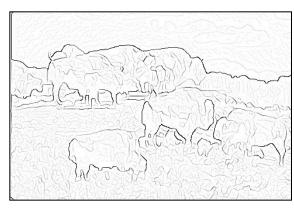
Source: S. Seitz

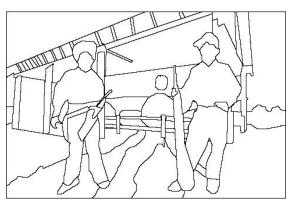
Learning to detect boundaries

image

gradient magnitude







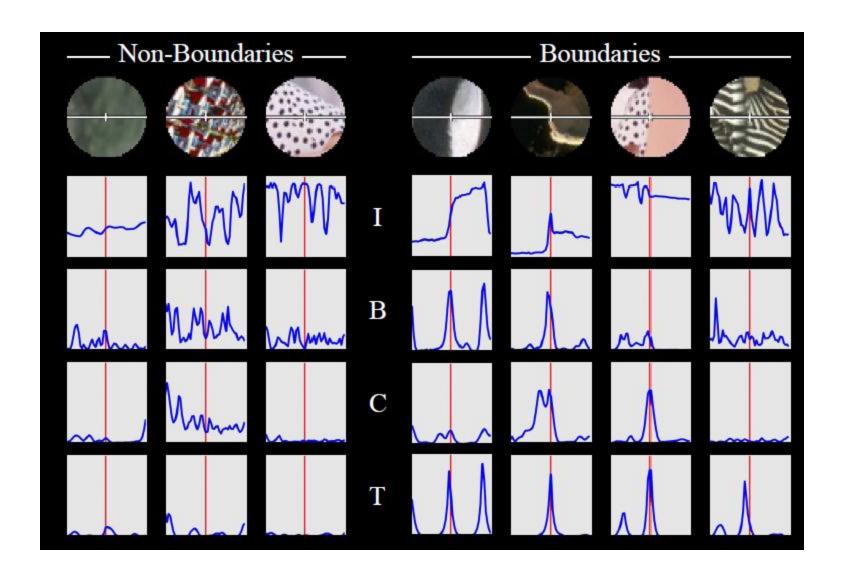
Berkeley segmentation database:

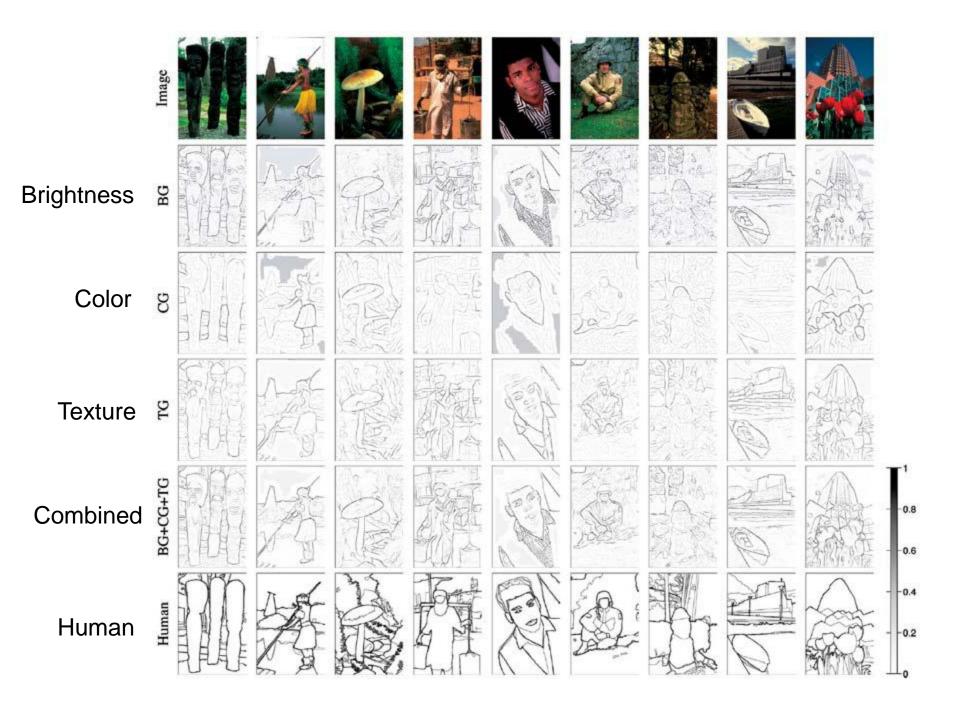
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

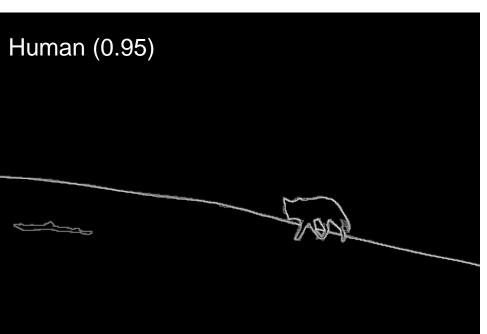


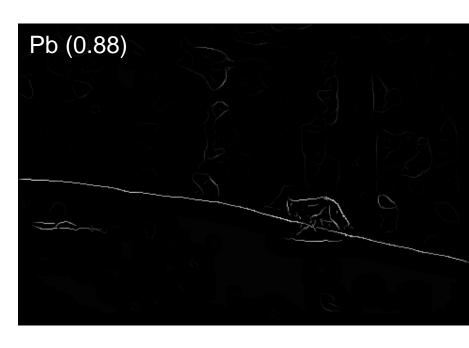
pB Boundary Detector



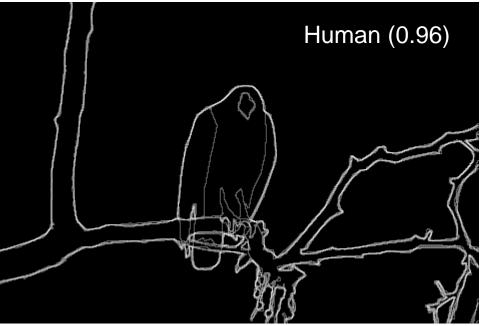


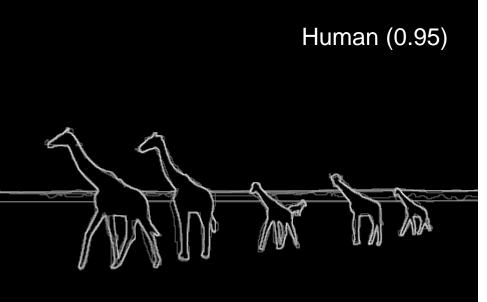
Results

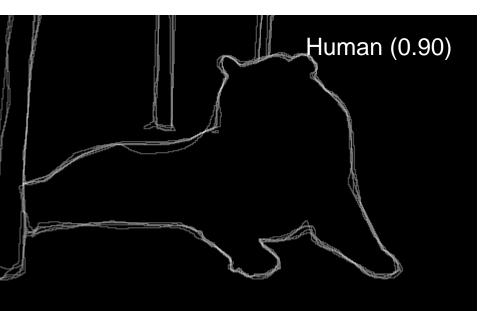




Results



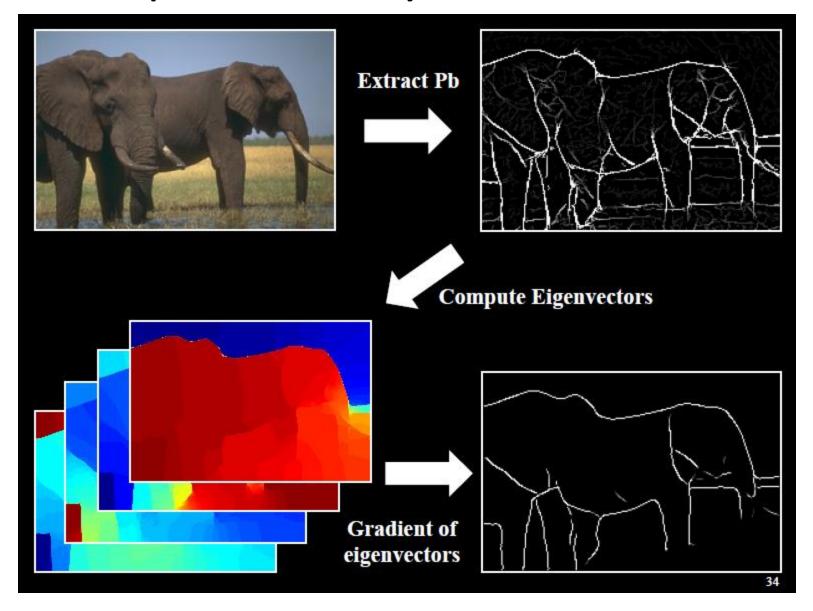




For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Global pB boundary detector



State of edge detection

- Local edge detection is mostly solved
 - Intensity gradient, color, texture

 Some methods to take into account longer contours, but could probably do better

Poor use of object and high-level information

Finding straight lines

Finding line segments using connected components

- 1. Compute canny edges
 - Compute: gx, gy (DoG in x,y directions)
 - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
 - find connected components for edge pixels with directions in {d-1, d, d+1}
- 4. Compute straightness and theta of edgelets using eig of x,y 2nd moment matrix of their points

$$\mathbf{M} = \begin{bmatrix} \sum (x - \mu_x)^2 & \sum (x - \mu_x)(y - \mu_y) \\ \sum (x - \mu_x)(y - \mu_y) & \sum (y - \mu_y)^2 \end{bmatrix} \quad [v, \lambda] = \text{eig}(\mathbf{M})$$

$$\theta = \text{at an } 2(v(2, 2), v(1, 2))$$

$$conf = \lambda_2 / \lambda_1$$

5. Threshold on straightness, store segment

2. Canny lines \rightarrow ... \rightarrow straight edges

Homework 1

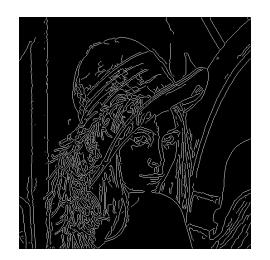
Due Feb 14, but try to finish by Tues (HW 2 will take quite a bit more time)

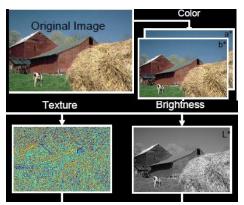
http://www.cs.illinois.edu/class/sp12/cs543/hw/CV Spring12 HW1.pdf

Things to remember

Canny edge detector =
 smooth → derivative → thin →
 threshold → link

- Pb: learns weighting of gradient, color, texture differences
- Straight line detector =
 canny + gradient orientations →
 orientation binning → linking →
 check for straightness





Next classes: Correspondence and Alignment

Detecting interest points

Tracking points

- Object/image alignment and registration
 - Aligning 3D or edge points
 - Object instance recognition
 - Image stitching