Templates, Image Pyramids, and Filter Banks

01/31/12

Computer Vision Derek Hoiem, University of Illinois

Administrative stuff

• Update on registration

 Extra office hour: Amin Sadeghi – Friday at 5pm before HW is due

Review

1. Match the spatial domain image to the Fourier magnitude image

Ε

D

Today's class

• Template matching

• Image Pyramids

• Filter banks and texture

• Denoising, Compression

Template matching

- Goal: find sin image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross
 Correlation

- Goal: find I in image
- Method 0: filter the image with eye patch $h[m,n] = \sum g[k,l] f[m+k,n+l]$

f = image g = filter

What went wrong?

Input

Filtered Image

- Goal: find I in image
- Method 1: filter the image with zero-mean eye $h[m,n] = \sum_{i=l} (g[k,l] - \overline{g}) \underbrace{(f[m+k,n+l])}_{\text{mean of template g}}$

Input

Filtered Image (scaled)

Thresholded Image

- Goal: find 💽 in image
- Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$

Input

1- sqrt(SSD)

Thresholded Image

Can SSD be implemented with linear filters?

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

• Goal: find 💽 in image

• Method 2: SSD $h[m,n] = \sum (g[k,l] - f[m+k,n+l])^2$

What's the potential

downside of SSD?

k,l

Input

1- sqrt(SSD)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2(template, im)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

A: Depends

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling

Gaussian pyramid

512 256 128 64 32 16 8

Source: Forsyth

Template Matching with Image Pyramids

Input: Image, Template

- 1. Match template at current scale
- 2. Downsample image
 - In practice, scale step of 1.1 to 1.2
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Laplacian filter

Source: Lazebnik

Laplacian pyramid

Source: Forsyth

Computing Gaussian/Laplacian Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Hybrid Image

Hybrid Image in Laplacian Pyramid

High frequency \rightarrow Low frequency

Image representation

- Pixels: great for spatial resolution, poor access to frequency
- Fourier transform: great for frequency, not for spatial info
- Pyramids/filter banks: balance between spatial and frequency information

Major uses of image pyramids

- Compression
- Object detection
 - Scale search
 - Features
- Detecting stable interest points

Registration

 Course-to-fine

Application: Representing Texture

Source: Forsyth

Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

Compute responses of blobs and edges at various orientations and scales

Overcomplete representation: filter banks

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

 Process image with each filter and keep responses (or squared/abs responses)

How can we represent texture?

Measure responses of blobs and edges at various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Can you match the texture to the response?

Mean abs responses

Representing texture by mean abs response

Mean abs responses

Representing texture

 Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms (more on this in coming weeks)

Compression

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

- Quantize
 - More coarsely for high frequencies (which also tend to have smaller values)
 - Many quantized high frequency values will be zero
- Encode
 - Can decode with inverse dct

Filter responses $\overset{u}{\longrightarrow}$										
G =	$\begin{bmatrix} -415.38 \\ 4.47 \\ -46.83 \\ -48.53 \\ 12.12 \\ -7.73 \\ -1.03 \\ -0.17 \end{bmatrix}$	$\begin{array}{r} -30.19 \\ -21.86 \\ 7.37 \\ 12.07 \\ -6.55 \\ 2.91 \\ 0.18 \\ 0.14 \end{array}$	$\begin{array}{r} -61.20 \\ -60.76 \\ 77.13 \\ 34.10 \\ -13.20 \\ 2.38 \\ 0.42 \\ -1.07 \end{array}$	$\begin{array}{r} 27.24\\ 10.25\\ -24.56\\ -14.76\\ -3.95\\ -5.94\\ -2.42\\ -4.19\end{array}$	$56.13 \\ 13.15 \\ -28.91 \\ -10.24 \\ -1.88 \\ -2.38 \\ -0.88 \\ -1.17$	$\begin{array}{r} -20.10 \\ -7.09 \\ 9.93 \\ 6.30 \\ 1.75 \\ 0.94 \\ -3.02 \\ -0.10 \end{array}$	$\begin{array}{r} -2.39 \\ -8.54 \\ 5.42 \\ 1.83 \\ -2.79 \\ 4.30 \\ 4.12 \\ 0.50 \end{array}$	$\begin{array}{c} 0.46 \\ 4.88 \\ -5.65 \\ 1.95 \\ 3.14 \\ 1.85 \\ -0.66 \\ 1.68 \end{array}$	$\downarrow v$	
Quantized values										
	В		-2 - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

Quantization table

Q =	16 12 14 14 18 24	11 12 13 17 22 35	10 14 16 22 37 55	16 19 24 29 56 64	24 26 40 51 68 81	40 58 57 87 109 104 121 100	$51 \\ 60 \\ 69 \\ 80 \\ 103 \\ 113$	61 55 56 62 77 92
	24 49	$\frac{5}{35}$	55 78	64 87	81 103	104 121	113 120	92 101
	72	92	95	98	112	100	103	99

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (e.g., with Huffman coding)

Lossless compression (PNG)

- Predict that a pixel's value based on its upper-left neighborhood
- 2. Store difference of predicted and actual value
- 3. Pkzip it (DEFLATE algorithm)

Denoising

Additive Gaussian Noise

٠

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing

5x5

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5 :

Source: K. Grauman

Median filter

MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering

Gaussian

Other non-linear filters

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance *and* intensity difference)

Bilateral filtering

Image: http://vision.ai.uiuc.edu/?p=1455

Bilateral filters

• Edge preserving: weights similar pixels more

$$\begin{split} I_{\mathbf{p}}^{\mathrm{b}} &= \frac{1}{W_{\mathbf{p}}^{\mathrm{b}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \ I_{\mathbf{q}} \end{split}$$
with $W_{\mathbf{p}}^{\mathrm{b}} &= \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) \ G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Review of last three days

Review: Image filtering f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[\cdot, \cdot] \frac{1}{9} \frac{1}{1} \frac{1}{1}$$

1

1

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Image filtering

1	1	1	1
<u>1</u> 9	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Image filtering

1	1	1	1
1 9	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Filtering in spatial domain

consume soor shill be the

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)

Gaussian

FFT of Gradient Filter

FFT of Gaussian

• Derivative of Gaussian

- Applications of filters
 - Template matching (SSD or Normxcorr2)
 - SSD can be done with linear filters, is sensitive to overall intensity
 - Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
 - Laplacian pyramid
 - More compact image representation
 - Can be used for compositing in graphics

- Applications of filters
 - Downsampling
 - Need to sufficiently low-pass before downsampling
 - Compression
 - In JPEG, coarsely quantize high frequencies

Next class: edge detection

