
Templates, Image Pyramids, and Filter Banks

Computer Vision

Derek Hoiem, University of Illinois

01/31/12

Administrative stuff

• Update on registration

• Extra office hour: Amin Sadeghi – Friday at
5pm before HW is due

Review

1. Match the spatial domain image to the
Fourier magnitude image

1 5 4

A

3 2

C

B

D

E

Today’s class

• Template matching

• Image Pyramids

• Filter banks and texture

• Denoising, Compression

Template matching

• Goal: find in image

• Main challenge: What is a
good similarity or distance
measure between two
patches?
– Correlation

– Zero-mean correlation

– Sum Square Difference

– Normalized Cross
Correlation

Matching with filters

• Goal: find in image

• Method 0: filter the image with eye patch

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk



What went wrong?

f = image

g = filter

Matching with filters

• Goal: find in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfglkgnmh
lk



True detections

False

detections

mean of template g

Matching with filters

• Goal: find in image

• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[lnkmflkgnmh
lk



True detections

Matching with filters

Can SSD be implemented with linear filters?

2

,

)],[],[(],[lnkmflkgnmh
lk



Matching with filters

• Goal: find in image

• Method 2: SSD

Input 1- sqrt(SSD)

2

,

)],[],[(],[lnkmflkgnmh
lk



What’s the potential

downside of SSD?

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patch mean template

5.0

,

2

,

,

2

,

,

)],[()],[(

)],[)(],[(

],[

















 



lk

nm

lk

nm

lk

flnkmfglkg

flnkmfglkg

nmh

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters

• Goal: find in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections

Q: What is the best method to use?

A: Depends

• Zero-mean filter: fastest but not a great
matcher

• SSD: next fastest, sensitive to overall intensity

• Normalized cross-correlation: slowest,
invariant to local average intensity and
contrast

Q: What if we want to find larger or smaller eyes?

 A: Image Pyramid

Review of Sampling

Low-Pass
Filtered Image

Image

Gaussian

Filter Sample
Low-Res
Image

Gaussian pyramid

Source: Forsyth

Template Matching with Image Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image

– In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps

with non-maxima suppression

Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: Lazebnik

Laplacian pyramid

Source: Forsyth

Computing Gaussian/Laplacian Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Can we reconstruct the original

from the laplacian pyramid?

Hybrid Image

Hybrid Image in Laplacian Pyramid

High frequency  Low frequency

Image representation

• Pixels: great for spatial resolution, poor access to
frequency

• Fourier transform: great for frequency, not for spatial
info

• Pyramids/filter banks: balance between spatial and
frequency information

Major uses of image pyramids

• Compression

• Object detection

– Scale search
– Features

• Detecting stable interest points

• Registration
– Course-to-fine

Application: Representing Texture

Source: Forsyth

Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

What is texture?

 Regular or stochastic patterns caused by
bumps, grooves, and/or markings

How can we represent texture?

• Compute responses of blobs and edges at
various orientations and scales

Overcomplete representation: filter banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

• Process image with each filter and keep
responses (or squared/abs responses)

How can we represent texture?

• Measure responses of blobs and edges at
various orientations and scales

• Idea 1: Record simple statistics (e.g., mean,
std.) of absolute filter responses

Can you match the texture to the
response?

Mean abs responses

Filters
A

B

C

1

2

3

Representing texture by mean abs
response

Mean abs responses

Filters

Representing texture

• Idea 2: take vectors of filter responses at each pixel and
cluster them, then take histograms (more on this in coming
weeks)

How is it that a 4MP image can be compressed
to a few hundred KB without a noticeable
change?

Compression

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

• The first coefficient B(0,0) is the DC
component, the average intensity

• The top-left coeffs represent low frequencies,
the bottom right – high frequencies

Image compression using DCT
• Quantize

– More coarsely for high frequencies (which also tend to have smaller
values)

– Many quantized high frequency values will be zero

• Encode
– Can decode with inverse dct

Quantization table

Filter responses

Quantized values

JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2

– People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize

• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Lossless compression (PNG)

1. Predict that a pixel’s value based on
its upper-left neighborhood

2. Store difference of predicted and
actual value

3. Pkzip it (DEFLATE algorithm)

Denoising

Additive Gaussian Noise

Gaussian

Filter

Smoothing with larger standard deviations suppresses noise, but also blurs the

image

Reducing Gaussian noise

Source: S. Lazebnik

Reducing salt-and-pepper noise by
Gaussian smoothing

3x3 5x5 7x7

Alternative idea: Median filtering

• A median filter operates over a window by
selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman

Median filter

• What advantage does median filtering have
over Gaussian filtering?
– Robustness to outliers

Source: K. Grauman

Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

• MATLAB: medfilt2(image, [h w])

Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median

Other non-linear filters

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest
pixels)

• Bilateral filtering (weight by spatial distance and intensity
difference)

http://vision.ai.uiuc.edu/?p=1455 Image:

Bilateral filtering

http://vision.ai.uiuc.edu/?p=1455

Bilateral filters

• Edge preserving: weights similar pixels more

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Original Gaussian Bilateral

spatial similarity (e.g., intensity)

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Review of last three days

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Review: Image filtering

1 1 1

1 1 1

1 1 1

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Image filtering

1 1 1

1 1 1

1 1 1

],[g 

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Image filtering

1 1 1

1 1 1

1 1 1

],[g 

Credit: S. Seitz

Filtering in spatial domain
-1 0 1

-2 0 2

-1 0 1

* =

Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Review of Last 3 Days

• Linear filters for basic processing

– Edge filter (high-pass)

–Gaussian filter (low-pass)

FFT of Gaussian

[-1 1]

FFT of Gradient Filter

Gaussian

Review of Last 3 Days

• Derivative of Gaussian

Review of Last 3 Days

• Applications of filters

– Template matching (SSD or Normxcorr2)

• SSD can be done with linear filters, is sensitive to
overall intensity

– Gaussian pyramid

• Coarse-to-fine search, multi-scale detection

– Laplacian pyramid

• More compact image representation

• Can be used for compositing in graphics

Review of Last 3 Days

• Applications of filters

– Downsampling

• Need to sufficiently low-pass before downsampling

– Compression

• In JPEG, coarsely quantize high frequencies

Next class: edge detection

