Templates, Image Pyramids, and Filter Banks

Computer Vision
Derek Hoiem, University of Illinois
Administrative stuff

• Update on registration

• Extra office hour: Amin Sadeghi – Friday at 5pm before HW is due
Review

1. Match the spatial domain image to the Fourier magnitude image
Today’s class

• Template matching

• Image Pyramids

• Filter banks and texture

• Denoising, Compression
Template matching

• Goal: find in image

• Main challenge: What is a good similarity or distance measure between two patches?
 – Correlation
 – Zero-mean correlation
 – Sum Square Difference
 – Normalized Cross Correlation
Matching with filters

• Goal: find 🙁 in image

• Method 0: filter the image with eye patch

\[h[m,n] = \sum_{k,l} g[k,l] \ f[m+k,n+l] \]

What went wrong?

Input

Filtered Image

f = image

g = filter
Matching with filters

• Goal: find 🎥 in image

• Method 1: filter the image with zero-mean eye

\[
 h[m,n] = \sum_{k,l} (g[k,l] - \bar{g}) (f[m+k,n+l])
\]

mean of template \(g \)

True detections
False detections

Input
Filtered Image (scaled)
Thresholded Image
Matching with filters

• Goal: find in image

• Method 2: SSD

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]

Input

1- sqrt(SSD)

Thresholded Image

True detections
Matching with filters

Can SSD be implemented with linear filters?

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]
Matching with filters

• Goal: find 🎨 in image

• Method 2: SSD

\[h[m, n] = \sum_{k,l} (g[k, l] - f[m+k, n+l])^2 \]

What’s the potential downside of SSD?
Matching with filters

- **Goal:** find the eye in image
- **Method 3:** Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \bar{g})(f[m+k,n+l] - \bar{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \bar{g})^2 \sum_{k,l} (f[m+k,n+l] - \bar{f}_{m,n})^2\right)^{0.5}}$$

Matlab: `normxcorr2(template, im)`
Matching with filters

- **Goal:** find in image
- **Method 3:** Normalized cross-correlation

Input
Normalized X-Correlation
Thresholded Image
Matching with filters

• Goal: find 🕒 in image
• Method 3: Normalized cross-correlation
Q: What is the best method to use?

A: Depends

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast
Q: What if we want to find larger or smaller eyes?

A: Image Pyramid
Review of Sampling

Image → Gaussian Filter → Low-Pass Filtered Image → Sample → Low-Res Image
Gaussian pyramid

Source: Forsyth
Template Matching with Image Pyramids

Input: Image, Template
1. Match template at current scale
2. Downsample image
 - In practice, scale step of 1.1 to 1.2
3. Repeat 1-2 until image is very small
4. Take responses above some threshold, perhaps with non-maxima suppression
Laplacian filter

unit impulse

Gaussian

Laplacian of Gaussian

Source: Lazebnik
Laplacian pyramid

Source: Forsyth
Computing Gaussian/Laplacian Pyramid

Can we reconstruct the original from the laplacian pyramid?

Hybrid Image in Laplacian Pyramid

High frequency \rightarrow Low frequency
Image representation

- Pixels: great for spatial resolution, poor access to frequency

- Fourier transform: great for frequency, not for spatial info

- Pyramids/filter banks: balance between spatial and frequency information
Major uses of image pyramids

• Compression

• Object detection
 – Scale search
 – Features

• Detecting stable interest points

• Registration
 – Course-to-fine
Application: Representing Texture

Source: Forsyth
Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings
How can we represent texture?

• Compute responses of blobs and edges at various orientations and scales
Overcomplete representation: filter banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
Filter banks

• Process image with each filter and keep responses (or squared/abs responses)
How can we represent texture?

• Measure responses of blobs and edges at various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses
Can you match the texture to the response?

Filters

A

B

C
Representing texture by mean abs response
Representing texture

• Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms (more on this in coming weeks)
How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?
Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)
Using DCT in JPEG

• The first coefficient $B(0,0)$ is the DC component, the average intensity
• The top-left coeffs represent low frequencies, the bottom right – high frequencies
Image compression using DCT

• Quantize
 – More coarsely for high frequencies (which also tend to have smaller values)
 – Many quantized high frequency values will be zero

• Encode
 – Can decode with inverse dct

Filter responses
\[
G = \begin{bmatrix}
-415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\
-46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\
-48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\
12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\
-7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\
-1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\
-0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68
\end{bmatrix}
\]

\[
\begin{bmatrix}
\uparrow \\
u
\end{bmatrix}
\]

\[
\begin{bmatrix}
v
\end{bmatrix}
\]

Quantization table
\[
Q = \begin{bmatrix}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\
14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\
14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
72 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{bmatrix}
\]

Quantized values
\[
B = \begin{bmatrix}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-3 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
JPEG Compression Summary

1. Convert image to YCrCb
2. Subsample color by factor of 2
 - People have bad resolution for color
3. Split into blocks (8x8, typically), subtract 128
4. For each block
 a. Compute DCT coefficients
 b. Coarsely quantize
 • Many high frequency components will become zero
 c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG
Lossless compression (PNG)

1. Predict that a pixel’s value based on its upper-left neighborhood
2. Store difference of predicted and actual value
3. Pkzip it (DEFLATE algorithm)
Denoising

Additive Gaussian Noise

Gaussian Filter
Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik
Reducing salt-and-pepper noise by Gaussian smoothing

3x3 5x5 7x7
Alternative idea: Median filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

- Is median filtering linear?

Source: K. Grauman
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

<table>
<thead>
<tr>
<th>Filters have width 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
</tr>
<tr>
<td>MEDIAN</td>
</tr>
<tr>
<td>MEAN</td>
</tr>
</tbody>
</table>

Source: K. Grauman
Median filter

- MATLAB: medfilt2(image, [h w])

Source: M. Hebert
Median vs. Gaussian filtering

Gaussian

Median
Other non-linear filters

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest pixels)

• Bilateral filtering (weight by spatial distance and intensity difference)
Bilateral filters

- Edge preserving: weights similar pixels more

\[
I^b_p = \frac{1}{W^b_p} \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(\|I_p - I_q\|) I_q
\]

with
\[
W^b_p = \sum_{q \in S} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(\|I_p - I_q\|)
\]

Review of last three days
Review: Image filtering

\[f[\cdot,\cdot] \]

\[h[\cdot,\cdot] \]

\[
h[m, n] = \sum_{k,l} f[k,l] g[m+k, n+l]\]
Image filtering

\[f[\ldots] \]

\[h[\ldots] \]

\[h[m, n] = \sum_{k,l} f[k, l] \cdot g[m+k, n+l] \]

Credit: S. Seitz
Image filtering

\[f[\cdot,\cdot] \]

\[h[\cdot,\cdot] \]

\[h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l] \]

Credit: S. Seitz
Filtering in spatial domain

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\]
Filtering in frequency domain
Review of Last 3 Days

• Linear filters for basic processing
 – Edge filter (high-pass)
 – Gaussian filter (low-pass)

\[
[-1 \ 1]
\]

FFT of Gradient Filter

FFT of Gaussian

Gaussian
Review of Last 3 Days

• Derivative of Gaussian
Review of Last 3 Days

• Applications of filters
 – Template matching (SSD or Normxcorr2)
 • SSD can be done with linear filters, is sensitive to overall intensity
 – Gaussian pyramid
 • Coarse-to-fine search, multi-scale detection
 – Laplacian pyramid
 • More compact image representation
 • Can be used for compositing in graphics
Review of Last 3 Days

• Applications of filters
 – Downsampling
 • Need to sufficiently low-pass before downsampling
 – Compression
 • In JPEG, coarsely quantize high frequencies
Next class: edge detection