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Administrative stuff 

 

• Update on registration 

 

• Extra office hour: Amin Sadeghi – Friday at 
5pm before HW is due 



Review 

1. Match the spatial domain image to the 
Fourier magnitude image 
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Today’s class 

 

• Template matching 

 

• Image Pyramids 

 

• Filter banks and texture  

 

• Denoising, Compression 

 



Template matching 

• Goal: find       in image 

 

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches? 
– Correlation 

– Zero-mean correlation 

– Sum Square Difference 

– Normalized Cross 
Correlation 

 



Matching with filters 

• Goal: find       in image 

• Method 0: filter the image with eye patch 

 

Input Filtered Image 
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What went wrong? 

f = image 

g = filter 



Matching with filters 

• Goal: find       in image 

• Method 1: filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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True detections 

False 

detections 

mean of template g 



Matching with filters 

• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) Thresholded Image 
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True detections 



Matching with filters 

  

Can SSD be implemented with linear filters? 
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Matching with filters 

• Goal: find       in image 

• Method 2: SSD 

 

Input 1- sqrt(SSD) 
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What’s the potential 

downside of SSD? 



Matching with filters 

• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Matlab: normxcorr2(template, im) 

mean image patch mean template 
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Matching with filters 

• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Matching with filters 

• Goal: find       in image 

• Method 3: Normalized cross-correlation 

 

 

Input Normalized X-Correlation Thresholded Image 

True detections 



Q: What is the best method to use? 

 

A: Depends 

• Zero-mean filter: fastest but not a great 
matcher 

• SSD: next fastest, sensitive to overall intensity 

• Normalized cross-correlation: slowest, 
invariant to local average intensity and 
contrast 



Q: What if we want to find larger or smaller eyes? 

 

 

 A: Image Pyramid 



Review of Sampling 

 

Low-Pass 
Filtered Image 

Image 

Gaussian 

Filter Sample 
Low-Res 
Image 



Gaussian pyramid 

Source: Forsyth 



Template Matching with Image Pyramids 

 
Input: Image, Template 
1. Match template at current scale 

 
2. Downsample image 

– In practice, scale step of 1.1 to 1.2 

 
3. Repeat 1-2 until image is very small 

 
4. Take responses above some threshold, perhaps 

with non-maxima suppression 



Laplacian filter 

Gaussian 
unit impulse 

Laplacian of Gaussian 

Source: Lazebnik 



Laplacian pyramid 

Source: Forsyth 



Computing Gaussian/Laplacian Pyramid 

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html 

Can we reconstruct the original 

from the laplacian pyramid? 



Hybrid Image 

 



Hybrid Image in Laplacian Pyramid 

High frequency  Low frequency 



Image representation 

 

• Pixels: great for spatial resolution, poor access to 
frequency 

 

• Fourier transform: great for frequency, not for spatial 
info 

 

• Pyramids/filter banks: balance between spatial and 
frequency information 



Major uses of image pyramids 

 
• Compression 

 
• Object detection 

– Scale search 
– Features 

 
• Detecting stable interest points  

 
 

• Registration 
– Course-to-fine 

 



Application: Representing Texture 

Source: Forsyth 



Texture and Material 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



Texture and Orientation 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



Texture and Scale 

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/ 



What is texture? 

 

 Regular or stochastic patterns caused by 
bumps, grooves, and/or markings 

 



How can we represent texture? 

 

• Compute responses of blobs and edges at 
various orientations and scales 

 

 



Overcomplete representation: filter banks 

LM Filter Bank 

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html 



Filter banks 

• Process image with each filter and keep 
responses (or squared/abs responses) 



How can we represent texture? 

 

• Measure responses of blobs and edges at 
various orientations and scales 

 

• Idea 1: Record simple statistics (e.g., mean, 
std.) of absolute filter responses 

 

 

 



Can you match the texture to the 
response? 

Mean abs responses 

Filters 
A 

B 

C 

1 

2 

3 



Representing texture by mean abs 
response 

Mean abs responses 

Filters 



Representing texture 

• Idea 2: take vectors of filter responses at each pixel and 
cluster them, then take histograms (more on this in coming 
weeks) 



How is it that a 4MP image can be compressed 
to a few hundred KB without a noticeable 
change? 

Compression 



Lossy Image Compression (JPEG) 

Block-based Discrete Cosine Transform (DCT) 

Slides: Efros 



Using DCT in JPEG    

• The first coefficient B(0,0) is the DC 
component, the average intensity 

• The top-left coeffs represent low frequencies, 
the bottom right – high frequencies 

 



Image compression using DCT 
• Quantize  

– More coarsely for high frequencies (which also tend to have smaller 
values) 

– Many quantized high frequency values will be zero 

• Encode 
– Can decode with inverse dct 

Quantization table 

Filter responses 

Quantized values 



JPEG Compression Summary 

1. Convert image to YCrCb 

2. Subsample color by factor of 2 

– People have bad resolution for color 

3. Split into blocks (8x8, typically), subtract 128 

4. For each block 

a. Compute DCT coefficients 

b. Coarsely quantize 

• Many high frequency components will become zero 

c. Encode (e.g., with Huffman coding) 

 
http://en.wikipedia.org/wiki/YCbCr 

http://en.wikipedia.org/wiki/JPEG 

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


Lossless compression (PNG) 

 

1. Predict that a pixel’s value based on 
its upper-left neighborhood 

2. Store difference of predicted and 
actual value 

3. Pkzip it (DEFLATE algorithm) 

 

 

 



Denoising 

 

 

Additive Gaussian Noise 

Gaussian 

Filter 



Smoothing with larger standard deviations suppresses noise, but also blurs the 

image 

Reducing Gaussian noise 

Source: S. Lazebnik 



Reducing salt-and-pepper noise by 
Gaussian smoothing 

3x3 5x5 7x7 



Alternative idea: Median filtering 

• A median filter operates over a window by 
selecting the median intensity in the window 
 
 
 
 
 
 
 

•   Is median filtering linear? 
Source: K. Grauman 



Median filter 

• What advantage does median filtering have 
over Gaussian filtering? 
– Robustness to outliers 

Source: K. Grauman 



Median filter 
Salt-and-pepper noise Median filtered 

Source: M. Hebert 

• MATLAB: medfilt2(image, [h w]) 



Median vs. Gaussian filtering 
3x3 5x5 7x7 

Gaussian 

Median 



Other non-linear filters 

• Weighted median (pixels further from center count less) 

 

• Clipped mean (average, ignoring few brightest and darkest 
pixels) 

 

• Bilateral filtering (weight by spatial distance and intensity 
difference) 

http://vision.ai.uiuc.edu/?p=1455 Image: 

Bilateral filtering 

http://vision.ai.uiuc.edu/?p=1455


Bilateral filters 

• Edge preserving: weights similar pixels more 

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998. 

Original Gaussian Bilateral 

spatial similarity (e.g., intensity) 

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf


Review of last three days 
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Review: Image filtering 

1 1 1 

1 1 1 

1 1 1 

],[g 



0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Image filtering 
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Credit: S. Seitz 
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Image filtering 
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Credit: S. Seitz 



Filtering in spatial domain 
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Filtering in frequency domain 

FFT 

FFT 

Inverse FFT 

=
 



Review of Last 3 Days 

• Linear filters for basic processing 

– Edge filter (high-pass) 

–Gaussian filter (low-pass) 

 

FFT of Gaussian 

[-1 1] 

FFT of Gradient Filter 

Gaussian 



Review of Last 3 Days 

• Derivative of Gaussian 



Review of Last 3 Days 

• Applications of filters 

– Template matching (SSD or Normxcorr2) 

• SSD can be done with linear filters, is sensitive to 
overall intensity 

– Gaussian pyramid 

• Coarse-to-fine search, multi-scale detection 

– Laplacian pyramid 

• More compact image representation 

• Can be used for compositing in graphics 

 



Review of Last 3 Days 

• Applications of filters 

– Downsampling 

• Need to sufficiently low-pass before downsampling 

– Compression 

• In JPEG, coarsely quantize high frequencies 

 



Next class: edge detection 


