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Review: image filtering NBRE
g[ ,]5 1111

f[.,.] h(.,.]

h[m,n]=> g[k,I] f[m+k,n+I]

Credit: S. Seitz



Review: image filtering in spatial domain




Today’s Class

* Fourier transform and frequency domain
— Frequency view of filtering
— Sampling



Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian Box filter




Hybrid Images
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* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Why do we get different, distance-dependent
interpretations of hybrid images?




Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Thinking in terms of frequency



Jean Baptiste Joseph Fourier (1768-1830)
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. . ...the manner in which the author arrives at these
had cra Zy idea ( 1807) ) equations is not exempt of difficulties and...his

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted sum|  desired on the score of generality and even rigour.
sines and cosines of differen

frequencies.
 Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

e Butit’s (mostly) true!
— called Fourier Series

— there are some subtle
restrictions
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A sum of sines

Our building block:

AsIn(aX + @)

Add enough of them to get
any signal f(x) you want!

f(target)=

f1 + f2+ fg...+ fﬂ+...




Frequency Spectra

« example : g(t) = sin(2xf t) + (1/3)sin(2z(3f) t)
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra




Frequency Spectra
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Example: Music

 We think of music in terms of frequencies at
different magnitudes

voice waveform example Spectrum of a voice signal {15 seconds)




Other signals

 We can also think of all kinds of other signals
the same way

Cats(?)
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Fourier analysis in images

Intensity Image

N
N\

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering



Signals can be composed
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http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.ntml



Strong Vertical Frequency
(Sharp Horizontal Edge)

Strong Horz. Frequency

Diagonal Frequencies
PR (Sharp Vert. Edge)

Log Magnitude




Fourier Transform

* Fourier transform stores the magnitude and phase at each
frequency
— Magnitude encodes how much signal there is at a particular frequency
— Phase encodes spatial information (indirectly)

— For mathematical convenience, this is often notated in terms of real
and complex numbers

NIC)

Amplitude: A= i\/R(a))2 + 1 (w)z Phase: @ = tan
R(w)

Euler's formula: €"* = cos(nx) + i sin(nz)



Computing the Fourier Transform
H(w) = F{h(x)} = Ae’?

Continuous

Discrete
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k =-N/2..N/2

Fast Fourier Transform (FFT): NlogN



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg *h]=F[g]F[h]

* The inverse Fourier transform of the product of
two Fourier transforms is the convolution of the
two inverse Fourier transforms

Fghl = F[g]* F[h]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!



Properties of Fourier Transforms

* Linearity Flaz(t) + by(t)] = aF[z(t)] + bF[y(t)]

* Fourier transform of a real signal is symmetric
about the origin

* The energy of the signal is the same as the
energy of its Fourier transform

See Szeliski Book (3.4)



Filtering in spatial domain

intensity image




Filtering in frequency domain

intensity image

log fit magnitude

FFT

Inverse FFT

SR T BRI )




Fourier Matlab demo



FFT in Matlab

* Filtering with fft

im = ... % “im” should be a gray-scale floating point image
[imh, imw] = size (im);

fftsize = 1024; % should be order of 2 (for speed) and include padding

im fft = £ft2(im, fftsize, fftsize); % 1) fft im with padding

hs = 50; % filter half-size

fil = fspecial('gaussian', hs*2+1, 10);

fil fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im fil fft = im fft .* fil fft; $ 3) multiply fft images

im fil = ifft2(im fil fft); % 4) inverse fft2

im fil = im fil(l+hs:size(im,1)+hs, l+hs:size(im, 2)+hs); % 5) remove padding

* Displaying with fft

figure(l), imagesc(log(abs(fftshift(im fft)))), axis image, colormap Jjet



Questions

Which has more information, the phase or the
magnitude?

What happens if you take the phase from one
image and combine it with the magnitude
from another image?




Filtering

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian Box filter n




intensity image

Gaussian

filter: gaussian

l"‘h“l!l

filtered image
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filter: gaussian

log fft magnitude of filtered image




Box Filter

intensity image Open File filter: box filtered image

Figure 4 Figure 6
iew Insert Tools Desktop Window Help File E_dit View Insert Tools Desktop Window Hﬁjlp | | File Edit View Insert Tools Desktop Window Help
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log fft magnitude of image filter: box log fit magnitude of filtered image




Sampling

Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Subsampling by a factor of 2

‘ .\'.‘l ‘l

Throw away every other row and
column to create a 1/2 size image



Aliasing problem

e 1D example (sinewave):

A
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Aliasing problem

1D example (sinewave):
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Source: S. Marschner



Aliasing problem

e Sub-sampling may be dangerous....
* Characteristic errors may appear:

— “Wagon wheels rolling the wrong way in
movies”

— “Checkerboards disintegrate in ray tracing”
— “Striped shirts look funny on color television”

Source: D. Forsyth



Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPOB

frame O frame 1 frame 2 frame 3 frame 4
0 ] n 1,
shutter open fime

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Aliasing in graphics

Disintegrating textures

Source: A. Efros



Sampling and aliasing

256x256  128x128 64x64 32x%32 16x16
R R R R m R e |.-

' AR B
A A i R s § Em

-
"
*
-
-
&

-

- -

-

- -
-
=

. u e
i iii mm m = mm
» By
. m m

- W
e e
- - R =8
- e N
N E N
- . n




Nyquist-Shannon Sampling Theorem

When sampling a signal at discrete intervals, the
sampling frequency must be > 2 x f__

f

This will allows to reconstruct the original
perfectly from the sampled version
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ax = Max frequency of the input signal




Anti-aliasing

Solutions:
 Sample more often

* Getrid of all frequencies that are greater
than half the new sampling frequency

— Will lose information
— But it’s better than aliasing
— Apply a smoothing filter



Algorithm for downsampling by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))
3. Sample every other pixel

im_small =im_blur(1:2:end, 1:2:end);



Anti-aliasing
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Subsampling without pre-filtering
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1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Slide by Steve Seitz



Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Why do we get different, distance-dependent
interpretations of hybrid images?




Clues from Human Perception

e Early processing in humans filters for various orientations and scales of
frequency
* Perceptual cues in the mid-high frequencies dominate perception

* When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters
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Hybrid Image in FFT
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Perception

Why do we get different, distance-dependent
interpretations of hybrid images?




Things to Remember

e Sometimes it makes sense to think of
images and filtering in the frequency
domain

— Fourier analysis

e Can be faster to filter using FFT for large
images (N logN vs. N2 for auto-
correlation)

* Images are mostly smooth
— Basis for compression

]
; 2% |

e Remember to low-pass before sampling A

N



Practice question

1. Match the spatial domain image to the
Fourier magnitude image

3




Next class

 Template matching

* I[mage Pyramids

* Filter banks and texture

* Denoising, Compression



