01/24/12

Pixels and Image Filtering

Computer Vision

Derek Hoiem, University of Illinois

Graphic: http://www.notcot.org/post/4068/

http://www.notcot.org/post/4068/

Today’s Class: Pixels and Linear Filters

* Review of lighting

— Reflection and absorption
 What is image filtering and how do we do it?

e Color models (if time allows)

Reflection models

e Albedo: fraction of light that is reflected

— Determines color (amount reflected at each
wavelength)

Very low albedo (hard

.— to see shape)

Higher albedo

Reflection models

e Specular reflection: mirror-like
— Light reflects at incident angle
— Reflection color = incoming light color

Reflection models

e Diffuse reflection

— Light scatters in all directions (proportional to cosine with
surface normal)

— Observed intensity is independent of viewing direction
— Reflection color depends on light color and albedo

Surface orientation and light intensity

 Amount of light that hits surface from distant point source
depends on angle between surface normal and source

I(x) = P(x)(S/'N(x))

prop to cosine of relative angle

Reflection models

Lambertian: reflection Mirrored: reflection all Glossy: reflection mostly
all diffuse specular diffuse, some specular

Specularities

Questions

* How many light sources are in the scene?

e How could | estimate the color of the camera’s
f

The plight of the poor pixel

* A pixel’s brightness is determined by
— Light source (strength, direction, color)
— Surface orientation
— Surface material and albedo

— Reflected light and shadows from surrounding
surfaces

— Gain on the sensor

* A pixel’s brightness tells us nothing by itself

Basis for interpreting intensity images

* Key idea: for nearby scene points, most factors
do not change much

* The information is mainly contained in local
differences of brightness

Darkness = Large Difference in Neighboring Pixels

Next three classes: three views of filtering

* Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

* Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression

 Templates and Image Pyramids
— Filtering is a way to match a template to the image
— Detection, coarse-to-fine registration

The raster image (pixel

— —— p——
—— S
- — >
———" =
w..- -i"i —
N———
e

matrix)

| 0.91
“ ‘ R L

0.89

092 [093 | 094 | 0.97 | 0.62 [037 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99
0.95 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91
0.89 | 0.72 | 051 | 055 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 | 0.92
0.96 | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95
071 | 0.81 | 0.81 | 0.87 | 0.57 | 037 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85

& 0.49 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33
ol 086 | 0.84 | 074 | 058 | 051 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74
M 096 | 0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93
(] 0.69 | 049 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99
0.79 | 0.73] 0.90 | 0.67 | 0.33 [0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97
0.94 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93

Image filtering

* Image filtering: compute function of local neighborhood
at each position

 Linear filtering: function is a weighted sum/difference of
pixel values

* Really important!
— Enhance images
* Denoise, resize, increase contrast, etc.
— Extract information from images
* Texture, edges, distinctive points, etc.

— Detect patterns
e Template matching

Example: box filter

1|11
1
—l1]1]|1
9

1| 1|1

Slide credit: David Lowe (UBC)

Image filtering ABnE
g[,]5 1(1]1

f[.,.] h[.,.]

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering ABnE
g[,]5 1(1]1

f[.,.] h[.,.]

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering ABnE
g[,]5 1(1]1

f[.,.] h[.,.]

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering ABnE
g[,]5 1(1]1

f[.,.] h[.,.]

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering TS

f[.,.] h[.,.]

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering

al- 15

f[.,.] h[.,.]

30

30

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering

f[.,.]

al- 15

l.,.]

20

30

30

50

h[m,n] =" glk,1] f[m+k,n+1]

Credit: S. Seitz

Image filtering ql- -1 R

f[.,.]

h[m,n]=> g[k,I] f[m+k,n+I]

Credit: S. Seitz

Box Filter

What does it do?

* Replaces each pixel with 1] 1| 1
an average of its 1
neighborhood ol I

9
111

« Achieve smoothing effect
(remove sharp features)

Slide credit: David Lowe (UBC)

Smoothing with box filter

Practice with linear filters

olo]|o 0
0|1]0 o
olo]|o

Original

Source: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters

olo]|o 0
0|01 e
olo]|o

Original

Source: D. Lowe

Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe

Practice with linear filters

0[0]|O 1

0[2]0 - ‘)
9 ®

0|00

(Note that filter sums to 1)

Original

Source: D. Lowe

Practice with linear filters

O|

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe

Sharpening

before

Source: D. Lowe

Other filters

1]0]-1

210 |-2

1]0]-1
Sobel

Vertical Edge
(absolute value)

Other filters

Horizontal Edge
(absolute value)

Basic gradient filters

Horizontal Gradient Vertical Gradient
0|00 0O[1]|0 -1
-110 |1 0|00 or 10
0|00 0|-1|0 1

or

Example

How could we synthesize motion blur?

theta = 30; len = 20;
fil = imrotate(ones(l, len), theta, 'bilinear');
fil = fi1il / sum(fil(:));

figure(2), imshow(imfilter (im, fil));

Filtering vs. Convolution

g=filter f=image

e 2d filtering) /
—h=fi1lter2(g,f); or
h=imfilter (£, qg);

h[m,n]=>"glk,1] f[m+k,n+1]

e 2d convolution
— h=conv2 (g, f);

h[m,n]=>"glk,1] f[m—k,n—1]

Key properties of linear filters

Linearity:
filter(f, + £,) = filter(f;) + filter(f,)

Shift invariance: same behavior regardless of

pixel location
filter (shift (f)) = shift (filter (f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik

More properties

e Commutative:a*b=b *a
— Conceptually no difference between filter and signal

e Associative:a *(b*c)=(a*b) *c
— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter:a * (b, * b, * b,)

e Distributes over addition:a* (b+c)=(a* b) + (a * c)
e Scalars factorout: ka *b=a *kb =k (a * b)

e |dentity: unitimpulsee =0, 0, 1, 0, 0],
a*e=a

Source: S. Lazebnik

Important filter: Gaussian

e Spatially-weighted average

0.003
0.013
0.022
0.013
0.003

0.013 0.022 0.013 0.003
0.059 0.097 0.059 0.013
0.097 0.159 0.097 0.022
0.059 0.097 0.059 0.013
0.013 0.022 0.013 0.003

5x5 06=1

Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

e Remove “high-frequency” components from the
image (low-pass filter)
— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and
get same result as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o
is same as convolving once with kernel of width ov2

e Separable kernel

— Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Xty
G,(x — 1 207
(X.y) = 52 SXP :
1 x> y°
_ (f - 72) 1 g 22
V2To V2mo

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Separability example

2D fllterlng 2 la 12 1«13 15 15
(center location only)

The filter factors 112 |1 11 x | 1]2 1
into a product of 1D 2 1412|=]>
filters: 12 11 =7
. 2 1313 11
Perform fllten.ng Tl « B 15 1- =
along rows:
4 14 |6 18

Followed by filtering
along the remaining column:

Source: K. Grauman

Separability

e Why is separability useful in practice?

Some practical matters

Practical matters
How big should the filter be?

* Values at edges should be near zero < important!

e Rule of thumb for Gaussian: set filter half-width to
about3 o

Effectof o

e

.) e

a 2 4 G g 10 12 14 g 15 20

Practical matters

 What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate

— methods: 4 X F

e clip filter (black)
* wrap around

e copy edge
* reflect across edge

Source: S. Marschner

Practical matters

— methods (MATLAB):
* clip filter (black): imfilter(f, g, 0)
* wrap around: imfilter(f, g, ‘circular’)
e copy edge: imfilter(f, g, ‘replicate’)
* reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Practical matters

 What is the size of the output?

e MATLAB: filter2(g, f, shape)
— shape = ‘full’: output size is sum of sizesof fand g

— shape = ‘same’: output size is same as f

— shape = ‘valid’: output size is difference of sizes of fand g

same

Source: S. Lazebnik

A little more about color...

Digital Color Images

Bayer Filter

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

Incoming Light

o g T T —— . —

e
fo

Filter Layer

Sensor Array

! CMOS sensor

Resulting Pattern

BRILRVORRER

IR

Color Image

COPUPISNE 2000 philglnit

Images in Matlab

* |mages represented as a matrix

e Suppose we have a NxM RGB image called “im”

— im(1,1,1) = top-left pixel value in R-channel

— im(y, X, b) =y pixels down, x pixels to right in the bt channel

— im(N, M, 3) = bottom-right pixel in B-channel
* imread(filename) returns a uint8 image (values O to 255)

— Convert to double format (values 0 to 1) with im2double

row

column > R
092 | 093 [094 [097 | 062 | 037 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 |
095 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 | G
0.89 | 0.72 | 0.51 552 | 055
0.96 | 0.95 | 0.88 0.95 | 0.o1
0.71 | 0.81 | 0.81 091 | 0.9
0.49 | 0.62 | 0.60 0.92 | 0.99
0.97 | 0.95
0.86 | 0.84 | 0.74 0.95 | 091
0.79 | 0.85
0.96 | 0.67 | 0.54 0.91 | 0.92
0.45 | 0.33
0.69 | 0.49 | 0.56 0.97 | 0.95
0.49 | 0.74
0.79 | 0.73 | 0.90 0.79 | 0.85
0.82 | 0.93
0.91 | 0.94 | 0.89 0.90 | 0.99 045 | 033
e . . . : . ; . . 049 | 074
0.79 | 073 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 [""" o g3
0.91 | 094 | 0.89 | 0.49 | 0.41 [0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | '
oo o oo oo o oo oo 0.90 | 0.99
{079 [073 | 090 [0.67 | 033 | 061 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97
|o.91 0.94 | 0.89 | 049 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93

Color spaces

 How can we represent color?

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg

Color spaces: RGB

Default color space

(G=0,B=0)

(R=0,B=0)

(R=0,G=0)

Some drawbacks
 Strongly correlated channels
* Non-perceptual

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

Color spaces: HSV

Intuitive color space

Hue

Saturation

Color spaces: YCbCr

Fast to compute, good for
compression, used by TV

Y=0 Y=0.5

(Cb=0.5,Cr=0.5)

Cr

N Cb
ch (Y=0.5,Cr=0.5)
Y=1
V= 164 65.738 - R, N 129.057 - G’ N 25.064 - B}, Cr
256 256 256 (Y=0.5,Cb=05)
Co— 128+ —37.945 - R, 74494 G N 112.439- B},
256 256 256
Cr— 128+ 112.439- R, 94154 G’ o 18.285- Bp

256 256 256

Color spaces: CIE L*a*b*

“Perceptually uniform” color space

a
(L=65,b=0)

b

(L=65,a=0)

Luminance = brightness
Chrominance = color

Which contains more information?
(a) intensity (1 channel)
(b) chrominance (2 channels)

Most information in intensity

Only color shown — constant intensity

Most information in intensity

T3 T

—
AENEF]

Ry

copgrignt 2! IO philg@mit,edu

Only intensity shown — constant color

Intensity

lon In

Most informat

o e
G oo PN 34 EANE
ey s | 2

S

mit,

@

)

J phil

Image

igina

Or

Take-home messages

Image is a matrix of numbers (light
intensities at different orientations)

— Interpretted mainly through local
comparisons

Linear filtering is sum of dot product
at each position

— Can smooth, sharpen, translate (among
many other uses)

Attend to details: filter size,
extrapolation, cropping

Color spaces beyond RGB sometimes
useful

