Computer Vision: Summary and Discussion

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem
Announcements

• Today is last day of regular class 😊

• Poster session next Tuesday
 – Reports due by Wed at noon

• Derek and Ian out of town Wed afternoon through Friday
 – I plan to be in office and available after class today (3:30-4:30) and Wed (10am-11am, 2pm-3pm)
Today’s class

• Review of important concepts

• Some important open problems

• Feedback and course evaluation
Fundamentals of Computer Vision

• Geometry
 – How to relate world coordinates and image coordinates
• Matching
 – How to measure the similarity of two regions
• Alignment
 – How to align points/patches
 – How to recover transformation parameters based on matched points
• Grouping
 – What points/regions/lines belong together?
• Categorization
 – What similarities are important?
Geometry

• \(\mathbf{x} = \mathbf{K} \left[\mathbf{R} \ t \right] \mathbf{X} \)
 – Maps 3d point \(\mathbf{X} \) to 2d point \(\mathbf{x} \)
 – Rotation \(\mathbf{R} \) and translation \(\mathbf{t} \) map into 3D camera coordinates
 – Intrinsic matrix \(\mathbf{K} \) projects from 3D to 2D

• Parallel lines in 3D converge at the **vanishing point** in the image
 – A 3D plane has a vanishing line in the image

• \(\mathbf{x'}^T \mathbf{F} \mathbf{x} = 0 \)
 – Points in two views that correspond to the same 3D point are related by the fundamental matrix \(\mathbf{F} \)
Matching

• Does this patch match that patch?
 – In two simultaneous views? (stereo)
 – In two successive frames? (tracking, flow, SFM)
 – In two pictures of the same object? (recognition)
Matching

Representation: be invariant/robust to expected deformations but nothing else

- Often assume that shape is constant
 - Key cue: local differences in shading (e.g., gradients)
- Change in viewpoint
 - Rotation invariance: rotate and/or affine warp patch according to dominant orientations
- Change in lighting or camera gain
 - Average intensity invariance: oriented gradient-based matching
 - Contrast invariance: normalize gradients by magnitude
- Small translations
 - Translation robustness: histograms over small regions

But can one representation do all of this?

- **SIFT**: local normalized histograms of oriented gradients provides robustness to in-plane orientation, lighting, contrast, translation
- **HOG**: like SIFT but does not rotate to dominant orientation
Alignment of points

Search: efficiently align matching patches

- **Interest points:** find repeatable, distinctive points
 - Long-range matching: e.g., wide baseline stereo, panoramas, object instance recognition
 - Harris: points with strong gradients in orthogonal directions (e.g., corners) are precisely repeatable in x-y
 - Difference of Gaussian: points with peak response in Laplacian image pyramid are somewhat repeatable in x-y-scale

- **Local search**
 - Short range matching: e.g., tracking, optical flow
 - Gradient descent on patch SSD, often with image pyramid

- **Windowed search**
 - Long-range matching: e.g., recognition, stereo w/ scanline
Alignment of sets

Find transformation to align matching sets of points

• Geometric transformation (e.g., affine)
 – Least squares fit (SVD), if all matches can be trusted
 – Hough transform: each potential match votes for a range of parameters
 • Works well if there are very few parameters (3-4)
 – RANSAC: repeatedly sample potential matches, compute parameters, and check for inliers
 • Works well if fraction of inliers is high and few parameters (4-8)

• Other cases
 – Thin plate spline for more general distortions
 – One-to-one correspondence (Hungarian algorithm)
Grouping

• Clustering: group items (patches, pixels, lines, etc.) that have similar appearance
 – Discretize continuous values; typically, represent points within cluster by center
 – Improve efficiency: e.g., cluster interest points before recognition
 – Summarize data

• Segmentation: group pixels into regions of coherent color, texture, motion, and/or label
 – Mean-shift clustering
 – Watershed
 – Graph-based segmentation: e.g., MRF and graph cuts

• EM, mixture models: probabilistically group items that are likely to be drawn from the same distribution, while estimating the distributions’ parameters
Categorization

Match objects, parts, or scenes that may vary in appearance

• Categories are typically defined by human and may be related by function, cost, or other non-visual attributes

• Key problem: what are important similarities?
 – Can be learned from training examples
Categorization

Representation: ideally should be compact, comprehensive, direct

- Histograms of quantized interest points (SIFT, HOG), color, texture
 - Typical for image or region categorization
 - Degree of spatial encoding is controllable by using spatial pyramids
- HOG features at specified position
 - Often used for finding parts or objects
Object Categorization

Search by Sliding Window Detector

- May work well for rigid objects

- Key idea: simple alignment for simple deformations

Object or Background?
Object Categorization

Search by Parts-based model

- Key idea: more flexible alignment for articulated objects
- Defined by models of *part appearance, geometry* or spatial layout, and search algorithm
Vision as part of an intelligent system

<table>
<thead>
<tr>
<th>3D Scene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Extraction</td>
</tr>
<tr>
<td>Texture</td>
</tr>
<tr>
<td>Grouping</td>
</tr>
<tr>
<td>Surfaces</td>
</tr>
<tr>
<td>Interpretation</td>
</tr>
<tr>
<td>Objects</td>
</tr>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Walk, touch, contemplate, smile, evade, read on, pick up, ...</td>
</tr>
</tbody>
</table>
Important open problems

Computer vision is potentially worth major $$$, but there are major challenges to overcome first.

• Driver assistance
 – MobileEye received >$100M in funding from Goldman Sachs
• Entertainment (Kinect, movies, etc.)
 – Intel is spending $100M for visual computing over next five years
• Security
 – Potential for billions of deployed cameras
• Robot workers
• Many more
Important open problems

Object category recognition: where is the cat?
Important open problems

Object category recognition: where is the cat?

Important questions:

• How can we better align two object instances?
• How do we identify the important similarities of objects within a category?
• How do we tell if two patches depict similar shapes?
Important open problems

Object representation: what is it?
Important open problems

Object representation: what is it?

Important questions:
• How can we pose recognition so that it lets us deal with new objects?
• What do we want to predict or infer, and to what extent does that rely on categorization?
• How do we transfer knowledge of one type of object to another?
Important open problems

• Spatial understanding: what is it doing? Or how do I do it?
Important open problems

• Spatial understanding: what is it doing? Or how do I do it?

Important questions:

• What are good representations of space for navigation and interaction? What kind of details are important?
• How can we combine single-image cues with multi-view cues?
Important open problems

• Algorithms: works pretty well \rightarrow perfect
 – E.g., stereo: top of wish list from Pixar guy Micheal Kass

Good directions:

• Incorporate higher level knowledge
Important open problems

• How should we adjust vision systems to solve particular tasks?
Important open problems

• Can we build a “core” vision system that can easily be extended to perform new tasks or even learn on its own?
 – What kind of representations might allow this?
 – What should be built in and what should be learned?
If you want to learn more...

• Read lots of papers: IJCV, PAMI, CVPR, ICCV, ECCV, NIPS

• Helpful topics for classes
 – David Forsyth’s optimization
 – Classes in machine learning or pattern recognition
 – Statistics, graphical models
 – Seminar-style paper-reading classes

• Just implement stuff, try demos, see what works
Feedback: very important

- My custom form
- ICES forms
See you next week!

• Project posters on Tuesday
 – Pizza provided
 – Posters: 24” wide x 32” tall