A 50-Gb/s IP Router

Presenter: Sheng Shen
PhD, ECE@UIUC
Internet Keeps Growing Fast

http://www.internetlivestats.com/internet-users/
Supporting the fast-growing internet

Transmission link Operating system Switch
Supporting the fast-growing internet

Transmission link
Operating system
Switch

Routers are slow!
What can we do?
Supporting the fast-growing internet

Transmission link Operating system Switch
What’s in a Router?

Input Ports → High-speed Switching Fabric → Output Ports

Routing Processor
Summary of Routing Functionality

• Step 1: Get the packet
• Step 2: Look into packet header for destination
• Step 3: Look up routing table for output interface
• Step 4: Modify header
• Step 5: Pass packet to output interface
Summary of Routing Functionality

• Step 1: Get the packet
• Step 2: Look into packet header for destination
• Step 3: Look up routing table for output interface
• Step 4: Modify header
• Step 5: Pass packet to output interface

How can we accelerate this process?
Gb/s, several million packets / second
Major Contributions

Input Ports → High-speed Switching Fabric → Output Ports

Routing Processor
Major Contributions

Input Ports

Forwarding Engine

Contains Forwarding Table
Handles ‘Fast Path’

High-speed Switching Fabric

Routing Processor

Output Ports
Major Contributions

- **High-speed Switching Fabric**
 - Routing Processor
 - Contains Forwarding Table
 - Handles ‘Fast Path’
 - Updates Routing Table
 - Handles ‘Slow Path’
 - Input Ports
 - Output Ports

- **Forwarding Engine**
 - Provides connection between input and output ports through the High-speed Switching Fabric.
Major Contributions

- High-speed Switching Fabric
 - Routing Processor
 - Contains Forwarding Table
 - Handles ‘Fast Path’
 - Updates Routing Table
 - Handles ‘Slow Path’
 - Forwarding Engine
 - Input Ports
 - Output Ports
 - Shared Bus
 - Switched Backplane
Innovation: Forwarding Engine

- Task: deciding where to forward each packet
- Now separated from line cards
- Custom hardware and software
Forwarding Engine: Hardware

- Alpha 21164 Processor
 - 415 MHz, 64 bit, 32 registers
 - 2 integer logical units, 2 float point units
Forwarding Engine: Hardware

• Alpha 21164 Processor
 - 415 MHz, 64 bit, 32 registers
 - 2 integer logical units, 2 float point units
 - 3 internal caches
 - instruction cache
 8kB, fit key routing code
 - data cache
 8kB, did not use
 - secondary cache
 96kB, slower, store ~12000 recent routes
 >95% hit rate
 - 1 external, tertiary cache
 - 16 MB, divided into two 8MB banks
 - one stores complete forwarding table
 - the other updated by the network processor via PCI bus
Forwarding Engine: Hardware Operation
Forwarding Engine: Hardware Operation

Pipelined forwarding: ‘fast path’!
Forwarding Engine: Software

- Hundreds lines of code
 - 85 most frequent instructions, ~42 cycles
- Peak forwarding speed: 9.8 MMPS (million packets per second)
Forwarding Engine: Software

- Hundreds lines of code
 - 85 most frequent instructions, ~42 cycles

- Peak forwarding speed: 9.8 MMPS (million packets per second)

- Fast Path contains 3 stages:
 - Checking
 - Routing
 match the destination with cached routes
 if missed, check complete routing table
 - Updating
 update TTL, checksum, etc. in the header, together with routing information
Forwarding Engine: Software

• Trick: Fast Path doesn’t check IP header checksum
 - instead, simply update it. (The bad is still bad).
 - errors are rare... Save 21% time.
Forwarding Engine: Software

• Trick: Fast Path doesn’t check IP header checksum
 - instead, simply update it. (The bad is still bad).
 - errors are rare... Save 21% time.

• What datagrams Fast Path cannot handle?
 - destination not in the cache
 - headers with errors
 - headers with IP options
 - datagrams that require fragmentation
 - multicast datagrams
Let network processor handle them!
Forwarding Engine: Software

• Trick: Fast Path doesn’t check IP header checksum
 - instead, simply update it. (The bad is still bad).
 - errors are rare... Save 21% time.

• What datagrams Fast Path cannot handle?
 - destination not in the cache
 - headers with errors
 - headers with IP options
 - datagrams that require fragmentation
 - multicast datagrams
 Let network processor handle them!

• Common questions
 - Why not use ASIC (application specific integrated circuit)?
 Router deployed in ISP’s backbone... IPv4 constantly evolving, require programmability
 - Is route cache effective?
 Yes. Full route lookup in off-chip memory is 5X more expensive than cache hit.
Innovation: Network Processor

- Task:
 - Updates routing table
 - Handles ‘Slow Path’
Network Processor

• Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge
Network Processor

• Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge

• Handles ‘slow path’
Network Processor

- Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge
- Handles ‘slow path’
- Updates routing table and forwarding table periodically
Network Processor

- Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge

- Handles ‘slow path’

- Updates routing table and forwarding table periodically
 - keeps complete routing information
 - including hop counts, where route is learned from, etc.
Network Processor

• Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge

• Handles ‘slow path’

• Updates routing table and forwarding table periodically
 - keeps complete routing information
 including hop counts, where route is learned from, etc.
 - builds forwarding table
 much smaller, only needs next hop information
Network Processor

• Commercial PC motherboard
 - 21064 Alpha processor, 233 MHz
 - runs 1.1 NetBSD
 - access to line cards through a PCI bridge

• Handles ‘slow path’

• Updates routing table and forwarding table periodically
 - keeps complete routing information
 including hop counts, where route is learned from, etc.
 - builds forwarding table
 much smaller, only needs next hop information
 - downloads forwarding table to forwarding engines
 remember: split forwarding memory into two banks
 one being used and the other being updated; then switch
Innovation: Switching Fabric

- Task: move data between function cards

- Input Ports
- Forwarding Engine
- High-speed Switching Fabric
- Output Ports
- Routing Processor
Switching Fabric: Hardware

- Conventional shared bus
 15-port point-to-point switch
Switching Fabric: Hardware

- **Conventional shared bus**
 - 15-port point-to-point switch
 - Pros: parallelism
 - 15 simultaneous data transfers can happen
 - Cons: doesn’t support one-to-many transfer (multicast)
 - simply copy the packets; still faster than shared bus!
Switching Fabric: Hardware

- **Conventional shared bus**
 15-port point-to-point switch
 - Pros: parallelism
 15 simultaneous data transfers can happen
 - Cons: doesn’t support one-to-many transfer (multicast)
 simply copy the packets; still faster than shared bus!

- **Two pin interfaces for each function card**
 - data interface:
 75 input data pins, 75 output data pins, 51.84 MHz
 - allocation interface:
 2 request pins, 2 inhibit pins, 1 input stats pin, 1 output status pin, 25.92 MHz

- **Bandwidth**
 - 1024 bits (data) + 176 bits (control) per transfer cycle
 - 49.77 Gb/s (data) in total
Switching Fabric: Pipelined Switching

- (Phase 1) Source card signals that it has data to send to the destination card
- (Phase 2) Switch allocator decides how to schedule the transfer in phase 4
- (Phase 3) Source and destination line cards are notified that the transfer will take place. Data path cards get ready
- (Phase 4) The transfer takes place.
Switching Fabric: The Allocator

• Task:
 - takes in connections requests from all function cards
 - outputs a transfer configuration

• Configuration space is large
 - input: 15 X 15 = 255 possible parings...
 - output: 15! (1.3 trillion) different ways to transfer
Switching Fabric: The Allocator

• Task:
 - takes in connections requests from all function cards
 - outputs a transfer configuration

• Configuration space is large
 - input: 15 X 15 = 255 possible parings...
 - output: 15! (1.3 trillion) different ways to transfer

• What is a good allocation strategy?
 - fast
 in order to enable pipeline switching
 - fair
 otherwise some ports have more opportunity to transfer than others
The Allocator: Straightforward Solution

• Zig-zag scan
 - Left-to-right, top-to-bottom

• Allocate the connection if the destination is not occupied
The Allocator: Straightforward Solution

- Zig-zag scan
 - Left-to-right, top-to-bottom
- Allocate the connection if the destination is not occupied
- Fairness: ×
 - there is a preference for low-numbered sources
- Speed: ×
 - for 15X15 matrix, need to evaluate 225 positions serially... too slow
The Allocator: New Method

• Fixing the fairness: Random Shuffling
 - randomly shuffle the sources and destination
 - the allocator maintains two 15-entry shuffle arrays for sources and destinations
The Allocator: New Method

• Fixing the fairness: Random Shuffling
 - randomly shuffle the sources and destination
 - the allocator maintains two 15-entry shuffle arrays for sources and destinations

• Fixing the timing problem: Wavefront Evaluation
 - evaluate positions in parallel
 - 225 steps \rightarrow 29 steps!
 - still a little slow...
The Allocator: New Method

• Fixing the fairness: Random Shuffling
 - randomly shuffle the sources and destination
 - the allocator maintains two 15-entry shuffle arrays for sources and destinations

• Fixing the timing problem: Wavefront Evaluation
 - evaluate positions in parallel
 - 225 steps \rightarrow 29 steps!
 - still a little slow...

• Split into groups
 - even faster!
Revisiting High-speed Switching Fabric Routing Processor

- Input Ports
- Output Ports
- High-speed Switching Fabric
- Forwarding Engine
 - Contains Forwarding Table
 - Handles ‘Fast Path’
- Routing Processor
 - Updates Routing Table
 - Handles ‘Slow Path’
- Shared Bus
- Switched Backplane

- Handles ‘Slow Path’
- Contains Forwarding Table
- Handles ‘Fast Path’

Diagram: Connections and labels indicating flow and functionality between components.
Conclusions

• A huge impetus to the router industry...
 - The industry started to build fast core routers in backbone networks

• Shows that examining every packet header is feasible in Gb network
 - desirable for security and robustness

• Shows that router technology is not failing
 - they really made it

• Careful selection and placement of hardware and software is the key
Further Thoughts

• Questions:
 - the network processor ARPs all possible addresses... is it acceptable on
 the Internet backbone?
 - how expensive is such a router? will people buy it?
 - ...

• Can we further accelerate router?
 PacketShader: a GPU-Accelerated Software Router
 - many operations can be done in parallel...
 - utilize GPU’s processing power
 - 4X improvement over existing software router
 - 39Gbps... but remember, this is a software router!
Thank you!