Where was security in the design of the original Internet protocols?

• Virtually nowhere!
• All the core protocols (IP, TCP, DNS, BGP) have trivial, glaring vulnerabilities

When security really matters, rely on end-to-end mechanisms

• Public key cryptography & certificate authorities

With e2e security, what can an attack on BGP still do?
Attacks on Internet routing

Denial of service

• announce “more attractive” path (what does that mean?)
• e.g., more-specific prefix; shorter path; “cheaper” path

Eavesdropping

• like DoS, a kind of traffic attraction
• but somehow get data to destination or impersonate it

Evasion of accountability

• steal someone’s prefix or an unused one; send spam; disappear!

How (much) do secure variants of BGP help?
Figure 91 illustrates that a majority of respondent organizations have implemented best current practices (BCPs) in critical network infrastructure security, once again representing significant progress over last year. These BCPs include routing protocol authentication; iACLs to keep undesirable traffic away from network infrastructure devices; and anti-spoofing measures at the edges of their networks. Nearly two-thirds of respondents have implemented out-of-band management networks (also called data communication networks or DCNs) that enable them to retain visibility into and control of their networks even during network partition events. More than 48 percent perform Internet Routing Registry (IRR) registration of their customer routes, up from 38 percent last year. Response readiness also saw improvement again this year, with 49 percent of respondent organizations practicing DDoS attack and defense simulations for their network. In the last survey, 42 percent of respondents indicated that they exercised their response readiness plans. Approximately 15 percent said they run simulations yearly, and another 26 percent run them either quarterly or monthly (Figure 92). We are very pleased by this development, and believe the improvement is directly related to the increasing number of victims, combined with the fact that the DDoS problem is now a top-of-mind concern for IT executives and their security teams. One organization had this impressive response: “Weekly simulations… with occasional ‘surprise’ simulations on other days. Engineers may also schedule their own intra-team simulations any time/day they choose.”

Network Infrastructure Security Practices

- **67%** Authentication for BGP, IGPs (MD5, SHA-1)
- **67%** iACLs at Network Edges
- **66%** Separate Out-of-Band (OOB) Management Network, Also Known As a Data Communication Network (DCN)
- **57%** BCP38/BCP84 Anti-Spoofing at Network Edges
- **48%** IRR Route Registration of Customer Prefixes
- **36%** Generalized TTL Security Mechanism (GTSM) for eBGP Peers
- **5%** Other

Figure 91 Source: Arbor Networks, Inc.
Three approaches to BGP security

1. Defensive filtering
2. Origin Authentication
3. Secure BGP (S-BGP)

Many others not discussed here

- Active area of research over the last decade
- Many tradeoffs, especially in deployment issues
1. Defensive filtering

Most commonly used class of techniques

Typical implementation

- Filter routes received from customers/peers
- Requires assumptions about what they should be advertising
- Imperfect, requires human maintenance

Arbor Networks survey 2012:
- 76% filter from customers
- 55% filter from peers
- 57% monitor for hijacks
1. Defensive filtering

Filtering difficult

Filtering feasible

Tier 1's

Mid-tier

Stub / Leaf
1. Defensive filtering

Pretty Good BGP [Karlin, Forrest, Rexford, ICNP’06]

- Deprioritize “novel” routes for a period (e.g. 24 hours)
- Routers prefer older (known) routes
- May still pick new route if it’s the only option
- Why does this help?

Advantages

- Raises the bar for attacker: route must persist
- Gives time for response
- No protocol changes for deployment

Disadvantages?
1. Defensive filtering

Pretty Good BGP [Karlin, Forrest, Rexford, ICNP’06]

Take-away points

- Prioritization is important: not just good vs. bad route
- Think about human-level solutions
 - # suspicious advertisements is only about 50/day
 - vs. $O(400k/day)$ total

![Graph showing the average number of announcements (per day) classified as suspicious using a suspicious period of 1 day and a variety of history periods (h).](image-url)
2. Origin Authentication

Idea

- Use a Routing Public Key Infrastructure (RPKI) to certify AS number assignment and IP address allocation
- An AS can only claim to originate a prefix it owns
- Analogous to PKI for web TLS/SSL security

Figure 2: Excerpt of a model RPKI

[Diagram from Cooper, Heilman, Brogle, Reyzin, Goldberg, HotNets 2013]
2. Origin Authentication

Deployment challenges

- Needs router changes to authenticate, filter
- Needs PKI...

Status

- RPKI just standardized in 2012
- Now seeing some limited regional deployment
3. S-BGP

Scheme

- Origin Authentication + hop-by-hop cryptographic validation

Deployment challenges

- Requires PKI
- Requires significant computational resources

Fig. 5. Route attestations in S-BGP. As UPDATE messages are passed between peers, the receiving peer signs the received message before passing it to another neighbor. The result is an “onion-style” attestation that contains signatures from all routers along the path.
How well do they work?

Quantifying the attack

• Attacker’s goal: attract traffic
• Measure fraction of ASes attacker can “steal” traffic from

How does the attacker do that?

• Basic “smart” strategy
 - Select or invent the shortest route you can get away with
 - Advertise it to everyone
• Weird fact: this is not actually the attacker’s best strategy; that’s NP-complete to compute!
How Secure are Secure Interdomain Routing Protocols? [Goldberg, Schapira, Hummon, Rexford, SIGCOMM 2010]

Figure 3: CCDF for the “Shortest-Path Export-All” attack strategy.

Legal but unusual: Announce routes from peers/providers to other peers/providers.
Is the attack on S-BGP really an attack?

- **No, not technically in the protocol**
 - ASes are allowed to export whatever routes they like

- **Yes, effectively**
 - Key point 1: unusual export can grab nearly as much traffic as prefix hijack!
 - Key point 2: Want protection against accidents well as attackers
Not just malicious attackers

Many or most high-profile outages likely just configuration errors

Natural correspondence between attackers and bugs

- behavior unknown ahead of time
- defense is to limit and contain worst-case effects

What about a bug in the protocol?

- worst-case scenario: zero-day exploit on large fraction of routers across the entire Internet
- many are running the same software!
Many flaws in routing. Which are critical? [Matthew]

Incentives to adopt secure routing? [Mahanth]

Partial deployment crucial. Issues?

Given all this, why does the Internet work so well? [John, Shambwaditya]
Announcements

Your availability...

• ...Monday 9:30 - 11?
• ...Monday 2:30 - 4?
• ...Wednesday 2 - 3:30?
• ...Tuesday/Thursday 3:30 - 4:30?

Next time: Denial of Service