794

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 7, JULY 1992

Cache Invalidation Patterns in
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Abstract—For constructing large-scale shared-memory multi-
processors, researchers are currently exploring cache coherence
protocols that do not rely on broadcast, but instead send invali-
dation messages to individual caches that contain stale data. The
feasibility of such directory-based protocols is highly sensitive to
the cache invalidation patterns exhibited by parallel programs. In
this paper, we analyze the cache invalidation patterns of several
parallel applications. Our results are based on multiprocessor
simulations with 8, 16, and 32 processors. To provide deeper
insight into the observed invalidation behavior, we link the
invalidations seen in the simulations to the high-level objects
causing them in the programs. To predict what the invalidation
patterns would look like beyond 32 processors, we propose a
classification scheme for data objects found in parallel programs.
The classification scheme provides a powerful conceptual tool to
reason about the invalidation patterns of parallel applications.
Our results indicate that it should be possible to scale “well-
written” parallel programs to a large number of processors
without an explosion in invalidation traffic. At the same time,
the invalidation patterns are such that directory-based schemes
with just a few pointers per entry can be very effective. The paper
also explores the variations in invalidation behavior with different
cache line sizes. The results indicate that cache line sizes in the
32-byte range yield the lowest data and invalidation traffic.

Index Terms— Cache coherence, cache invalidation patterns,
memory traffic, parallel application behavior, shared-memory
multiprocessors.

I. INTRODUCTION

critical issue in the design of shared-memory multipro-
cessors is the cache coherence strategy. Most existing
multiprocessors [10], [15], [19], [25] rely on a shared bus
and use a broadcast-based snoopy protocol to keep the caches
coherent [12], [20], [22]. However, such multiprocessors are
not scalable, since the shared bus soon becomes a bottleneck.
As an alternative, researchers have again started looking at
cache coherence protocols that do not rely on broadcast, a
common example being directory-based protocols [2], [5],
[14]. In directory-based protocols the system maintains state
about which caches have a copy of each memory block. On
a write, invalidation messages are sent only to those specific
caches that contain the memory block. The performance of
directory-based protocols depends critically on the distribution
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of the number of remote caches that need to be invalidated
on shared writes. The invalidation distribution is also vital
in determining the viability of directory schemes that provide
only a limited set of pointers per directory entry [2]. In this
paper we investigate the distribution of invalidations, how it
relates to data objects in the application, and how it is affected
by changes in the number of processors and the cache line size.

Our study is based on the invalidation traffic produced by a
set of five application programs. Four of the five applications
selected are “real” parallel programs, in that they solve real-
world problems and significant effort has gone into obtaining
good processor efficiency with them. (These four are also part
of the SPLASH parallel applications suite [23].) The remaining
application (Maxflow) is smaller, but it is still interesting in
that it could form the kernel of larger applications. Our results
are based on memory reference streams obtained from the
above applications when running with 8, 16, and 32 simulated
Processors.

While it is valuable to know the invalidation distributions
with the relatively small numbers of processors that we can
simulate realistically, our ultimate goal is to build machines
with hundreds or even thousands of processors [14]. Toward
this goal of predicting the invalidation distributions for a much
larger number of processors, we link the observed invalidation
patterns to the high-level program data structures (objects) that
cause them, and present a classification of such objects on
the basis of their expected invalidation behavior. We find that
it is far more accurate to extrapolate the behavior of each
class of data object than to simply extrapolate the composite
behavior of an application. For the application types we have
considered, our results indicate that it is quite possible to write
parallel programs for which the invalidation traffic does not
explode as the number of processors is increased. Our results
also indicate that directory-based schemes with just three to
four pointers per entry should work quite well for executing
well-designed parallel programs.

The paper also explores the variations in invalidation be-
havior and memory system traffic with different cache line
sizes. We explore cache line sizes between 4 and 256 bytes.
As cache lines are increased in length, we observe a slight
shift of invalidation patterns to larger invalidations. With an
increase in line size, we also find that the data traffic generally
goes up, the coherence traffic comes down, and that the overall
traffic is minimum (or close to minimum) when the line size
is 32 bytes.

The remainder of the paper is structured as follows. The next
section explains our simulation environment and assumptions.
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Section III introduces the five applications used in this study
and gives a brief overview of their computational behavior.
In Section IV we present the basic memory reference charac-
teristics of the applications. Section V presents the proposed
classification of shared data objects in parallel programs. In
Section VI we provide a detailed analysis of the invalidation
behavior of each application and relate the invalidation pat-
terns to specific data objects in the applications. Section VII
presents results obtained from experimenting with different
cache line sizes. Finally, Section VIII summarizes the results
and presents conclusions.

II. SIMULATION ENVIRONMENT

We use a simulated multiprocessor environment to study
the behavior of the applications. The simulation environment
consists of two parts: 1) a functional simulator that executes
the parallel applications and 2) an architectural simulator that
models the memory system of the multiprocessor.

The functional simulator used for this study is the Tango
multiprocessor reference generator [7]. The Tango system
takes a parallel application program and interleaves the ex-
ecution of its processes on a uniprocessor to simulate a
multiprocessor. This is achieved by associating a virtual timer
with each process of the application and by always running
the process with the lowest virtual time first.

Our architecture simulator assumes shared memory par-
titioned among the processing nodes, infinite caches, and
a directory-based cache-coherence protocol. We have made
no special effort to assign a processor’s data to memory
that is physically close to that processor. Memory pages
are simply assigned to memory modules using the lower
bits of the virtual page number. Infinite caches are used
in the simulator to enable us to study data-sharing effects
without any distortions introduced by finite-sized caches. The
cache coherence protocol used is an invalidation-based scheme
similar to that used by the Stanford DASH multiprocessor [14].
Except when specifically studying the effects of varying the
cache line size, the default line size used is 4 bytes. In order
to keep the simulator simple and architecture independent, we
further assume that all instructions execute in a single cycle.

The simulator gathers statistics on invalidation behavior and
message traffic. It also keeps track of each shared write by
source code file and line number. This allows us to link the
invalidation behavior observed back to the high-level language
objects causing it. To observe the behavior of synchronization
objects, statistics on locks are maintained by address. At each
unlock operation, the number of processors waiting to obtain
the lock is recorded. Because of Tango, our current simulation
environment is significantly more efficient than the trace-
driven environment used in our previous study [27]. We are
thus able to run entire programs and can capture the complete
invalidation behavior of the applications.

As Torrellas et al. observed [26], the level of compiler
optimization makes a significant difference to the ratio between
shared and private memory references in an application. Con-
sequently, for this study, all applications were compiled with

optimization level 2 (-02) using the Mips Computer Systems
C compiler (version 1.31).

III. APPLICATION PROGRAMS

In this section we describe the data structures and com-
putational behavior of the applications. This is important
background for Section VI, where we relate invalidation
traffic to high-level objects. The applications were selected
to represent a variety of algorithms used in an engineering
computing environment. All of the applications are written in
C and use the Argonne National Laboratory macro package
[16], [17] for synchronization and sharing primitives. The
synchronization primitives used include locks and barriers.
Further details about four of five the applications can be found
in the SPLASH report {23].

A. Maxflow

Maxflow finds the maximum flow in a directed graph.
This is a common problem in operations research and many
other fields. The program is a parallel implementation of an
algorithm proposed by Goldberg and Tarjan [11]. The bulk of
execution time in Maxflow is spent in picking activated nodes
from the graph, adjusting the flow along these nodes’ incoming
and outgoing edges, and then activating their successor nodes.
Maxflow exploits parallelism at a fine grain.

Maxflow does not assign the nodes of the graph to pro-
cessors statically. Instead, task queues are used to distribute
the load. Each processor has its own local task queue and
needs to go to the single global task queue only when its
local queue is empty. Tasks are put on to the global queue
only when processors are waiting there, and on to the local
queue otherwise. Note that the task queues are made up of the
nodes themselves, linked together with appropriate pointers.
Locks are used to serialize access to each node element, but
contention for these is fairly low as there are many more
nodes than processors. In Section VI we will see that most
cache invalidations are related to the global task queue and the
migration of node and edge data from one processor to another.
We used a graph with 400 nodes, arranged as a 20x20 grid,
for our studies.

B. MP3D

MP3D [18] simulates a three-dimensional wind tunnel using
particle-based techniques. It is used to study the shock waves
created as an object flies at high speed through the upper
atmosphere. A version of MP3D that runs on the Cray-2 is
being used extensively at NASA for research.

The overall computation of MP3D consists of evaluating the
positions and velocities of molecules over a sequence of time
steps, and gathering relevant statistics. During each time step,
molecules are picked up and moved according to their velocity
vectors, taking into account collisions with the boundaries
and other molecules. The main data structures consist of a
particle array and a space array. The particle array holds the
molecules and records their positions, velocities, and other
attributes. The space array corresponds to a fine grid imposed
on the three-dimensional space being modeled. Attributes of
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the space-array cells specify the boundaries of the tunnel and
the location of the physical object. The space array is also used
to determine collision partners for molecules and to keep track
of statistics (e.g., density and energy of molecules) about the
physical space it models.

The simulator is well suited to parallelization because each
molecule can be treated independently at each time step.
In our program, the molecules are assigned statically to the
processors. No locking is employed while accessing cells in
the space array as contention is expected to be rare, and
occasional errors can be tolerated due to the statistical nature
of the computation. A single lock protects the global number
of collisions counter. The only other synchronization used is
a barrier, which is invoked between the different phases of
the program. There are six barrier invocations per time step.
MP3D was run for 5 time steps with 10000 molecules and a
14x24x7 space array containing a flat plate object.

C. Water

Water 4] performs an N-body molecular dynamics simula-
tion of the forces and potentials in a system of water molecules.
It is used to predict some of the physical properties of water
in the liquid state.

The main data structure in Water is a large array of records
that is used to store the state of each molecule. As in MP3D,
the molecules are statically split among the processors. During
each time step, the processors calculate the interaction of the
atoms within each molecule, and of the molecules with each
other. For each molecule, the owning processor calculates the
interactions with only half of the molecules ahead of it in the
array. Since the forces between the molecules are symmetric,
each pairwise interaction between molecules is thus considered
only once. The state associated with the molecules is then
updated. We note that while some portions of the molecule
state are modified at each interaction, others are changed only
between time steps. There are also several variables holding
global properties that are updated continuously. Water was run
for 2 time steps with 288 molecules.

D. PTHOR

PTHOR [24] is a parallel logic simulator developed at
Stanford University. It uses a conservative distributed-time
simulation algorithm which is a modified version of the
Chandy—~Misra algorithm [6].

The primary data structures associated with the simulator
are the logic elements (e.g., AND-gates, flip-flops), the nets (the
wires linking the elements), and the task queues which contain
activated elements. Each element has a preferred task queue to
increase data locality. PTHOR alternates between two distinct
phases: element evaluation and deadlock resolution. During
element evaluation, each processor executes the following
loop. It removes an activated element from its task queue
(activation list) and determines the changes on the element’s
outputs. It then looks up the net data structure to determine
elements that are affected by the output change and potentially
schedules those elements on to other processors’ task queues.
When a processor’s task queue is empty, it steals elements
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from other processors’ task queues. When all activation lists
are empty, a simulation deadlock has been reached and is
resolved in a separate phase. During this deadlock resolution
phase, more elements are activated. PTHOR was run for a
simple RISC processor circuit with 5060 logic elements for
10 clock cycles.

E. LocusRoute

LocusRoute {21] is a global router for VLSI standard cells.
It has been used to design real integrated circuits, and offers
a high-quality routing.

The LocusRoute program exploits parallelism by routing
multiple wires in a circuit concurrently. Each processor ex-
ecutes the following loop: it picks a wire to route from the
task queue; it then explores alternative routes; and finally it
chooses the best route and places the wire there. The central
data structure used in LocusRoute is a grid of cells cailed the
cost array. Each row of the cost array corresponds to a routing
channel for standard cells. LocusRoute uses the cost array to
record the presence of wires at each point, and the congestion
of a route is used as a cost function for guiding the placement
of new wires. No locking is needed in the cost array, which
is accessed and updated simultaneously by several processors,
because the effect of occasional contention is tolerable. Each
routing task is of a fairly large grain size, which prevents
the task queue from becoming a bottleneck. For this study
we used the Primaryl circuit consisting of 1266 wires and a
481x18 cell cost array.

IV. PROGRAM CHARACTERISTICS

Table I gives an overview of the characteristics of the five
applications when run with 32 processors. For each applica-
tion, we give the number of data references and the breakdown
in terms of reads and writes. We also show the number
of shared reads and shared writes. In addition to absolute
numbers, the columns also list the number of references in
each category as a fraction of all data references. The last two
columns give the average number of invalidations caused by
each invalidating write, and the number of invalidating writes
per 1000 data references. Invalidating writes correspond to
write hits to clean data and write misses.

In our study, private and shared references are distinguished
as follows. Each application shares data between processes by
placing it in a special shared data space. We define shared
blocks to be those that are in the shared data space. We define
shared references to be reads and writes to shared blocks. We
note that depending on the task distribution strategy used and
the dynamics of a particular run, it is possible that some shared
blocks are referenced by only one process during the entire run.

From Table 1, we see that the proportion of reads and
writes is similar to what one might expect in uniprocessor
programs—the fraction of reads varies from 62% in MP3D to
83% in LocusRoute. The statistics for shared references, how-
ever, vary considerably from application to application. For
example, the ratio between shared reads and writes varies from
about 1.5:1 for MP3D to about 9:1 for LocusRoute. Overall,
considering all applications, shared reads are greatly favored
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TABLE I
GENERAL APPLICATION CHARACTERISTICS
num of data refs reads writes shared reads shared writes avg. invals inv-writes
Application CPUs mill mill % mill % mill % mill % per inv-write per 1000 refs
Maxflow 32 255 18.5 72 7.0 28 12.5 49 2.2 8 14 58
MP3D 32 23 1.4 62 0.9 38 1.0 46 0.7 30 1.0 221
Water 32 48.0 341 71 13.9 29 7.1 15 1.0 2 1.2 11
PTHOR 32 16.6 13.5 81 31 19 7.2 43 0.9 5 1.5 32
LocusRoute 32 18.5 15.3 83 32 17 8.7 47 1.0 5 1.6 27

over shared writes as compared to uniprocessor programs. As
another example, the fraction of shared references varies from
about 17% for Water to about 76% for MP3D.! In Water,
each interaction between molecules requires a fair amount of
local calculation. Thus updates to the states of the molecules
are relatively infrequent, and the fraction of shared references
is very low. In MP3D, on the other hand, most of the data
manipulation occurs directly on the shared data, and hence the
proportion of shared references is large. While these variations
are not unexpected, since they depend closely on the nature of
the application and the way in which it is parallelized, they are
indicative of the variety in the applications being evaluated.

The second to last column in Table I gives the average
number of invalidations per invalidating write. This number
is an important metric for directory-based cache coherence
schemes because a large value indicates the need for many
pointers per directory entry. As we can see, this number
is less than two for all applications, even though all runs
are with 32 processors. The last column of Table I gives
the average number of invalidating writes per 1000 data
references. The product of the entries in the last two columns
is a good indicator of the amount of invalidation traffic that
an application is expected to generate per unit time. We only
give average numbers here, and these look quite favorable.
However, averages are limited in the information they provide.
Consequently, we provide detailed invalidation distributions
and their analysis in Section VI.

V. CLASSIFICATION OF DATA OBJECTS

In this section we present our classification of data objects
based on invalidation behavior. The classification allows us to
explain a given application’s invalidation distribution in terms
of the underlying high-level data structures of that application.
More importantly, it represents a model that enables us to
predict the application’s invalidation behavior for much larger
number of processes than is feasible for us to simulate. We
propose to distinguish the following classes of objects:

1) Code and read-only data objects.

2) Migratory objects.

3) Mostly-read objects.

4) Frequently read/written objects.

!The fraction of references that are to shared data is somewhat larger than
that reported by Eggers [8]. This is most likely due to the fact that we are
compiling with the —02 flag, which tends to reduce local references through
register allocation.

5) Synchronization objects.

* low-contention synchronization objects
* high-contention synchronization objects

Code and read-only data objects: These objects do not
generally pose a problem to directory schemes because they
are written only once at the time when the relevant page is
first brought into memory, or when the data are initialized.
Invalidations are hence very infrequent. A fixed database is a
good example of read-only data.

Migratory data objects: These objects are manipulated by
only one processor at any given time. Shared objects protected
by locks often exhibit this property. While such an object is
being manipulated by a processor, the object’s data resides in
the associated cache. When the object is later manipulated by
some other processor, the corresponding cache entries in the
previous processor are invalidated. Migratory objects occur
frequently in parallel programs. The nodes in Maxflow are a
good example of migratory data. Each node is looked at by
several processors over the complete run, but there is only one
processor manipulating each node at any one time. Migratory
data usually cause a high proportion of single invalidations,
irrespective of the number of processors working on the
problem.

Mostly-read data objects: These objects are read most of the
time, and written only every now and then. An example is the
cost array of LocusRoute. It is read frequently, but written only
when the best route for a wire is decided. It is a candidate for
many invalidations per write, because many reads by different
processors occur before each write. However, since only the
writes cause invalidations and writes are infrequent, the overall
number of invalidations is expected to be quite small.

Frequently read/written objects: These objects are both read
and written frequently. Although each write causes only a
small number of invalidations, writes occur frequently, and
so the total number of invalidations can be quite large. An
example of a frequently read/written object is the variable that
holds the number of processors waiting on the global task
queue in Maxflow. It is continually checked by all processes,
and is updated whenever a process starts or stops waiting on
the global task queue.

Synchronization objects: These objects correspond to the
synchronization primitives used in paralle! programs, the most
frequent examples being locks and barriers. We further divide
synchronization objects into two categories, low-contention
and high-contention objects, since these two exhibit differ-
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ent invalidation behavior. Low-contention synchronization ob-
jects, such as distributed locks that protect access to a col-
lection of shared data objects, usually have very few or no
processes waiting on them. As a result, most often they
cause zero or a very small number of invalidations. Low-
contention locks are thus easy to implement and optimize for
in directory-based multiprocessors. High-contention synchro-
nization objects, on the other hand, usually cause frequent
invalidations, and the invalidations may be large if there
are many contending processes. A lock protecting a highly
contended task queue would be an example of such an object.
If high-contention locks are treated like regular data objects in
limited-pointer directories, their invalidation behavior can have
a severe impact on machine performance. Some combination
of software techniques (e.g., synchronization trees [28]) and
hardware techniques (e.g., queueing lock primitives [13])
are probably required to efficiently support high-contention
synchronization objects.

Bennett et al. [3] expand the classification of data objects
proposed in our earlier paper [27]. They use their classification
to perform adaptive software cache management on distributed
shared memory machines. The reason for a finer division
of objects is that some differences in object behavior are
important to a software cache coherence protocol, while they
make no difference in invalidation behavior. For example,
the invalidation behavior of Bennett’s producer/consumer and
read-mostly types will be indistinguishable for the case of
multiple consumers.

V1. APPLICATION CASE STUDIES

In this section we present the results of the detailed analysis
of the invalidation traces produced by the applications. For
each application, we discuss the overall invalidation patterns,
the high-level objects causing the invalidations, the synchro-
nization behavior, and the predicted invalidation behavior
beyond 32 processors.

The overall invalidation behavior is presented in terms of
a series of graphs as shown in Fig. 1. Parts (a), (c) and
(d) are the invalidation distribution graphs for 8, 16, and 32
processors, respectively. These graphs show what proportion
of invalidating writes cause 0, 1, 2, or more invalidations.

We distinguish between large invalidations and frequent
invalidations. A large invalidation is caused by a write to a
line that is cached by many processors. Frequent invalidations
are caused by frequent writes and need not necessarily be
large invalidations. Ideally, the invalidation distribution graphs
should contain a large proportion of small invalidations, as
these can be handled efficiently by directory-based cache
schemes. By comparing the invalidation distributions for 8,
16, and 32 processor runs, we can begin to get a feeling for
how the invalidations scale with a larger number of processors.

For the 32-processor run we give additional information.
Part (e) gives the proportion of reads, writes, shared reads,
and shared writes. Part (f) breaks invalidating writes and
invalidations down by important data objects found in the
application. Part (g) shows the composition of the invalidation
distribution of part (d). Each bar of (d) is normalized to 100
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and broken down into its data object components. We are thus
able to tell, for example, that invalidating writes causing 31
invalidations in Maxflow (0.1% of all invalidating writes) are
made up of 80% writes to global values and 20% writes to
edge elements of the graph being manipulated [Fig. 1 (g)].
Finally, part (b) presents the synchronization behavior for
the 32-processor run. The graph shows the distribution of
waiters at all unlock operations. For example, low-contention
locks should show a very small number of waiters at each
unlock operation. Note that the distribution of waiters in these
graphs is shown only for locks, since the behavior of waiting
processes at barriers depends strongly on the particular barrier
implementation chosen (for example, tree-structured versus flat
releases). We indicate the number of unlock operations and the
number of barriers encountered in text on the graphs.

A. Maxflow

From Figs. 1(a), (c), and (d) we see that a large fraction of
the invalidations in Maxflow are single invalidations. These
are mostly caused by the manipulation of node and edge data
structures, portions of which are good examples of migratory
data. What happens is as follows. One processor picks up
an active node and pushes flow through it. Later, when the
node is reactivated, some other processor picks it up and starts
processing it, thus causing a single invalidation. Sometimes,
however, the node gets picked up by the same processor as
before, in which case we do not see any invalidating writes,
because the node data is most likely still in the processor’s
cache. The likelihood of the same processor picking up a node,
however, decreases as more processors are added, and this
results in more invalidating writes. The trend is quite clear as
one moves from part (a) to (c) to (d) of Fig. 1. The invalidating
writes go from 0.93 M to 1.17 M fo 1.48 M.

As the number of processors is increased, we also observe
that the invalidation distribution slowly shifts to larger inval-
idations. While with 8 processors only about 9% of shared
writes cause more than one invalidation, this figure moves
up to 15% with 32 processors. There are three types of data
objects causing this shift: 1) data associated with the global
task queue, 2) node labels, and 3) edge link pointers. All of
these fall into the frequently read/written category. We now
consider each of these in turn.

The count of the number of processors waiting for the global
task queue to become nonempty is checked frequently by all
processors. It is also written frequently, namely whenever
a process starts waiting on the global task queue. For the
32-processor run, it has an average of 6 invalidations per
invalidating write and the highest number of shared writes
to any single data object. The global task queue pointer is a
close second. The above two categories are combined in Figs.
1(f) and (g) under global values. Here we see, for example,
that close to 80% of the writes causing invalidations in all 31
other processors can be attributed to these two data objects.

Node labels are constantly read as processors push flow
through nodes, and are also frequently modified. Edge link
pointers are traversed whenever flow across an edge is ex-
amined, and they are modified whenever an edge becomes
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active or inactive. Since edges connect different nodes, and
different nodes are examined by different processors, there are
always many different processors traversing the edge lists and
modifying the pointers. The node labels and edge link pointers
account for most of the increase in small invalidations as we
increase the number of processors.

Fig. 1(b) shows the synchronization behavior of Maxflow.
There are 402 locks total. Of these, 400 are distributed locks,
one for each of the 400 graph nodes. These are accessed
frequently, but there is very little contention for them. These
distributed locks are an excellent example of low-contention
locks. The remaining two locks are used to protect access to
the global task queue and the variable that counts the number
of processors blocked on the global task queue. These two
locks incur significant contention and are responsible for the
“tail” of large number of waiters in Fig. 1(b). The average
number of waiters for these two locks is about 5. We note that
there are also six barriers that are exercised once each during
the run of the program.

We now use the object classification to see how the inval-
idation distributions are expected to change as the number of
processors is scaled. We expect little change in the invalida-
tions produced by the migratory portions of the graph node and
edge structures. They should continue to produce the single
invalidations typical of migratory data. The global task queue
pointer and block count, on the other hand, are frequently
read/written data and are expected to have an increasing
average number of invalidations per write. This is also true
for the node labels and edge pointers. In addition, we expect
to see more waiters at the global queue locks as contention
for them increases. If the program is to scale well as number
of processors is increased, we must reduce contention for the
global task queue and we must partition the graph so that the
number of processors sharing the frequently read/written node
label and edge pointer objects is small.

B. MP3D

Figs. 2(a), (c), and (d) show the invalidation distributions
for the MP3D program, the 3-D particle-based simulator. Here
again the distributions are dominated by single invalidations.
However, as we increase the number of processors, the inval-
idation distributions remain essentially the same.

Most accesses to shared data by MP3D consist of updating
the properties of a given particle or space array entry. This
results in a sequence of reads closely followed by writes to
the same locations. Depending on whether the data object
was previously accessed by the same processor or not, either
a single invalidation or no invalidations result. These data
behave in a migratory fashion, with each interval of active
use being very short.

From part (g) of Fig. 2 we see that most of the larger
invalidations are due to a variable that keeps track of the
average probability of collision for each cell in the three-
dimensional space array. This variable is read by different
processors during a time step as they decide whether or not
a collision occurred. It is updated only between time steps.
There are also a few global properties that are read by every
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processor but again are updated only between time steps. Both
of these object groups fall into the mostly-read category.

Part (b) of Fig. 2 shows the synchronization behavior of
MP3D. Work is distributed statically in MP3D, and there
is very little synchronization overhead. The distribution of
waiting processes in Fig. 2(b) is entirely due to one lock that
protects the access to a set of global counters. After every
time-step each processor updates the global count with its
own local count.

The effect of the mostly-read data found in MP3D is minor
because of the low frequency of writes to this data. The
remaining data behave strictly migratory and we thus expect
little change in the invalidation distribution of MP3D as it is
scaled to a larger number of processors.

C. Water

Figs. 3(a), (c), and (d) show the invalidation distributions for
the Water code. The distributions are made up almost entirely
of single invalidations. There is only a slight increase in the
number of invalidating writes and in the average invalidations
per write as the number of processors is increased.

The main data structure in the Water code is a large array of
records, one for each water molecule. Most of the time is spent
calculating the pairwise interaction of molecules. At the end
of each interaction, a portion of the state of the two molecules
is updated. This portion of the molecule data is migratory, and
causes only single invalidations. There is another portion of the
molecule record that is also read while computing the pairwise
interactions, but it is updated only between time steps. Since
the molecules allocated to a processor interact with only half
of all the other molecules (see Section I11-C), at the end of each
time step half of the processors have cached this mostly-read
data. Consequently the update causes invalidations to half the
total number of processors. Part (g) of Fig. 3 illustrates this
clearly.

There are also a small number of variables that hold global
properties of the water molecule system. These again fall into
the mostly-read category. They are read by all processors
throughout, and updated between time steps. At each update,
invalidations are sent to all processors.

There is very little synchronization in Water, since the work
is partitioned statically. There is a set of distributed locks,
one for each molecule, and a small number of individual
locks to protect the updates of global values. There is very
little contention for the distributed locks. While there is some
contention for the update of the global values, contention is
low enough that it is not a factor in the overall lock waiter
distribution [see Fig. 3(b)].

We do not expect the invalidation distribution of the Water
code to change significantly as the number of processors is
increased, because most of the data is migratory. The mostly-
read structures are written very infrequently and thus cause
only minor increases in the average number of invalidations
per invalidating write.

D. PTHOR
Figs. 4(a), (c), and (d) show the invalidation distributions
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for PTHOR. We again find that very few of the shared writes
cause large invalidations. The basic data objects of PTHOR
are the logic elements and net data structures.

In PTHOR, sharing of net data is determined by the con-
nectivity of the circuit. Some nets, such as the clock net,
are attached to many elements. They are thus cached by
many processors and cause large invalidations when written.
Typically though, most nets connect only a few elements and
writes to them cause a small number of invalidations.

During the program run, the logic elements behave like
migratory objects and we mostly see single invalidations.
Some portions of the element data structure, however, are
not modified by every processor that references them. These
“longer-lived” values, such as the minimum valid time of an
element, fit into the mostly-read category and result in larger
invalidations when they are updated.

The head pointers of the free lists for data structures are
usually migratory. However, the head pointer is checked
before taking an item off a given free list. If the list is empty,
many processors could cache the head pointer and it becomes
mostly-read for a short phase.

The large invalidations in PTHOR are due to mostly-read
global data objects. Common examples are the heads of the
activation lists (task queues), and the count of number of
processors waiting for the deadlock phase. These are checked
frequently by most processors, but are changed relatively
infrequently. Link pointers in the activation list also fall into
the mostly-read category.

Most of the zero invalidations are caused when the element
and net data structures are initialized, in parallel, at the
beginning of the run.

The synchronization behavior shown in Fig. 4(b) is dom-
inated by element locks. These distributed locks show very
little contention. Most of the time there are no waiters when
an unlock occurs. The larger number of waiters at unlock
operations are almost all due to a single lock that is used to
protect the count of processors that have reached the deadlock
phase of the Chandy—Misra simulation algorithm.

As the number of processors is scaled, we expect that
the invalidations produced by the element data structures
would not increase, since they act as migratory objects. The
invalidation patterns due to the net data structures should also
not change (beyond a point) as the connectivity of the circuit
remains the same. We expect larger average invalidations per
invalidating write for the mostly-read global objects and the
activation list link pointers. Overall, we expect a steady shift of
the invalidation distribution toward larger invalidations, unless
new locality-enhancing heuristics are added.

E. LocusRoute

Parts (a), (c), and (d) of Fig. 5 show the invalidation dis-
tributions for LocusRoute. The largest source of invalidations
in LocusRoute is the global cost array. The cost array is a
good example of mostly-read data. It is frequently read while
testing different routes for a wire, but is written only when the
wire route is decided. The average number of invalidations per
shared write of the cost array is about 2 with 32 processors,
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but some writes can cause up to 17 invalidations. Small
invalidations are much more common, because in LocusRoute
there is enough locality to keep the number of processors
actively sharing a region of the cost array small.

Another large source of invalidating writes is a collection
of variables, labeled misc data in Figs. 5(f) and (g), that are
migratory. The most frequently used ones of this set are the
RouteRecords, which are used by the processors as they route
a wire. They are reused by other processors for routing other
wires, and cause only zero and single invalidations. The data
structures related to the wire tasks (labeled tasks) are also
migratory, while the flag that signals whether the task queue
is empty or not (labeled empty flag) is mostly-read. Neither
one of these last two data structures, however, accounts for a
very large fraction of the total invalidations. The group labeled
global values represents a small number of global variables.
These fall into one of two categories: 1) global counts that
are updated using read-modify-write operations and act as
migratory objects, and 2) global flags that are read by many
processors, but modified infrequently and act as mostly-read
objects.

Part (b) of Fig. 5 shows the synchronization behavior of
LocusRoute. There are a total of 51 locks; 46 of these are
distributed locks with very little contention. Of the remaining
five, only a mutual exclusion lock used for printing and the
lock that controls the task queue from which processors obtain
their wire tasks have any noticeable contention. However, they
are used infrequently, and thus do not cause problems. The
single barrier is used only once to synchronize the start of the
slave processes.

As more processors are added, the average number of
invalidations per shared write is expected to increase slightly,
because more processors are likely to have cached a given
portion of the cost array. However, since the cost array is a
mostly-read object with infrequent writes, the absolute number
of invalidations per data reference is expected to remain small.
By exploiting geographic locality, that is by partitioning the
cost array into regions and assigning wires in a region to the
corresponding processor, it might be possible to further limit
the growth in the number of invalidations per shared write.

VII. EFFECT OF CACHE LINE SIiZE

We now investigate the effect of different cache line sizes
on invalidation patterns and traffic. While larger cache lines
are desirable from the point of hardware efficiency and the
prefetching they provide in multiprocessors, they can also
cause significant increases in message traffic. There are several
reasons for this. First, a larger cache line size increases the
minimum communication granularity between processes. For
example, even if a process wants to communicate a single
word of information to another process, the minimum data
that is sent across the network is still the whole cache line,
thus increasing traffic volume. (This assumes an invalidation-
based cache coherence protocol.) Second, parallel programs
usually exhibit less spatial locality than sequential programs.
For example, if a cache line is large and contains multiple
data items (with each data item corresponding to a different
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subtask), in a parallel program those subtasks may be evaluated
on different processors. The spatial locality in this case is less
than in a sequential version of the program, where all subtasks
are processed one after the other by the same processor. Third,
the number of invalidating writes and the message traffic may
also increase due to false sharing [26]. Using the previous
example again, if each subtask performs multiple modifications
to the corresponding data item, then the cache line will bounce
back and forth between the multiple processors, although no
real communication is involved.

In the data presented so far we have used a cache line size
of 4 bytes. This line size eliminates all false sharing. We now
present results for cache line sizes between 4 and 256 bytes.
In Figs. 6—10, we show two graphs for each application. The
left graph shows the changes in the invalidation distribution as
the line size is increased. The right graph shows the amount of
message traffic generated and its breakdown into components
for different line sizes. The messages correspond to those

that are required by the DASH cache-coherence protocol
[14]. To compute traffic, we count three types of messages:
invalidations and acknowledgments (7 bytes each), requests
(7 bytes), and data messages (7 + linesize bytes). The size of
the messages was obtained by assuming 2 bytes for routing,
1 byte for control, and 4 bytes for address. We take the total
traffic in bytes and divide it by the product of the total cycles
for the run and the number of processors to arrive at the traffic
rate in bytes per cycle per processor. Since our simulation
runs were done assuming an ideal memory system, where each
instruction execution and memory access takes a single cycle,
the traffic rate in fact indicates bytes per instruction executed
(rather than bytes per clock cycle).

A. Invalidation Patterns

We first examine the left graphs in Figs. 6—10. For line
sizes of 4, 32, and 256 bytes the graphs show the invalidation
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distributions, and they list the total number of invalidating
writes and the average size of invalidations.

Focusing on the effect of line size on the number of
invalidating writes, we observe that the outcome depends on
the relative sizes of the data objects in the program and the
cache lines. If the typical data objects are larger than the line
size, we will need to update several cache lines every time a
complete object is written. Consequently, as the line size is
increased, fewer lines will be modified, and we should see a
decrease in the number of invalidating writes. This effect can
be seen in all five applications when the line size is increased
from 4 bytes to 32 bytes. For example, for the Water code
(Fig. 8), the number of invalidating writes decreases from 534
K with 4-byte lines to 178 K with 32-byte lines. On the other
hand, when the line size gets larger than the typical objects,
several objects will fit into each cache line, and additional
invalidating writes will be generated due to false sharing.
Maxflow (Fig. 6) exhibits this trend when going from 32 to

256 byte lines, with the invalidating writes increasing from 963
K to 1039 K. The other applications do not exhibit this trend.
For some of these other applications the typical data objects
are larger than 256 bytes. For others the apparent object size
is increased by reference patterns in which a given processor
accesses neighboring objects consecutively.

Considering the effect of line size on the average size of
invalidations, there are again several distinct effects that come
into play. First, a larger line size is expected to increase
the number of processors sharing a cache line (due to false
sharing), thus increasing the size of invalidations. Second,
depending on the spatial locality exhibited by different classes
of objects (e.g., migratory versus mostly-read objects) in the
program, an increased line size may reduce the number of
invalidating writes causing a single invalidation more than
those causing several invalidations, or vice versa. In programs
where writes that cause smaller invalidations are reduced
by a greater amount, the average size of invalidations will
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go up. For example, in PTHOR, a large fraction of zero
invalidations (with 4-byte lines) are caused during the parallel
initialization phase. These initialization accesses show very
good locality, and as the line size is increased the number
of writes causing zero invalidations diminishes dramatically.
The writes causing larger invalidations do not decrease in
the same proportion, thus increasing the average number of
invalidations per invalidating write. In LocusRoute, on the
other hand, the cost array references show good locality.
These data are mostly-read and cause many medium-sized
invalidations. When the line size is increased the number of
invalidating writes due to the cost array decreases, bringing
down the average number of invalidations per invalidating
write. We see that the effect of line size on invalidation
distribution is complex and not easily predicted. In general,
though, there is a slight trend toward larger invalidations as
the cache line size is increased.

B. Message Traffic

Let us now look at the right graphs in Figs. 6-10. We
show the message traffic in bytes per cycle per processor for
different line sizes. As the cache line is increased, there are
typically fewer messages of each type. As a result, the traffic
due to request and invalidation messages decreases, since the
message size remains constant regardless of the line size.
For data messages, however, the message size increases with
line size. This effect tends to offset the reduced number of
data messages. Depending on the program, one or the other
effect may dominate for a given line size. However, for very
large line sizes, the data message size always dominates, and
data traffic is largest for all applications. The minimum data
traffic is achieved with line sizes as small as 4 bytes for
applications with little data locality (such as Maxflow), or
as large as 16 bytes for applications with good data locality
(such as LocusRoute). When we look at total traffic, the
minimum is shifted further toward larger cache line sizes,
because of the continually decreasing trend of the request and

invalidation message traffic. Overall, traffic is minimum, or
close to minimum, for line sizes around 32 bytes.

Several researchers have studied the effect of cache line
size on message traffic. In general their data favors cache
line sizes smaller than the ones we find best in our study.
We now briefly discuss reasons for this apparent discrepancy.
Agarwal and Gupta [1] present results for several snoopy
coherence schemes using traces obtained from a four processor
system. Their traffic data favor smaller block sizes primarily
because they simulate bus-based snoopy protocols in contrast
to the directory-based protocols studied in this paper. In a bus-
based snoopy protocol, the amount of invalidation traffic is
quite small, since each invalidating write causes only a single
bus transaction. In contrast, in a directory-based protocol
the invalidation traffic can be quite large, since separate
invalidations must be sent to each processor caching the
data and acknowledgments must be received back. Since the
benefits of the reduced invalidation traffic (with larger line
size) are not so significant for snoopy protocols (as a fraction
of total traffic), they favor smaller line sizes. The Agarwal
and Gupta study also does not model request traffic (messages
to request memory lines from remote processing nodes), and
this again favors smaller line sizes. Similar comments apply to
the work of Eggers et al. [9], who also simulate a bus-based
system. Their results are, however, closer to ours. Torrellas
et al. [26] compute traffic by simply multiplying the number
of shared misses by the cache line size, where shared misses
include read and write misses as well as write hits to clean data.
While this method may provide an accurate traffic estimate for
bus-based systems, our model with different message sizes and
a fixed message size overhead is more accurate for general
interconnects.

VIII. GENERALIZATIONS AND CONCLUSIONS

We have proposed several classes of data objects that can
be distinguished by their use in parallel programs and by
their invalidation traffic patterns. By merging the invalidation
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behavior of the individual data objects used in an application,
we can gain insight into the overall invalidation behavior of
the application. We can also predict the invalidation behavior
beyond the 32 processor limit of our current simulation studies.

The code and read-only data objects are, in general, easy
to handle. Since they are written very infrequently, they cause
very few invalidations. Some directory schemes, however, do
not allow a memory location to be present in more caches than
there are pointers in the directory entry (for example Dir;NB
schemes in {2]). We would normally expect such schemes to
recognize code and handle it differently, thus alleviating part of
the problem. However, read-only data is much harder to detect,
especially since it is written at least once at initialization time,
and it may cause problems for such schemes.

Migratory data objects move from one processor to another
as execution progresses, but they are never manipulated by
more than one processor at any one time. Migration of the
data object causes at most single invalidations, because each
processor writes the object before relinquishing control of
it. Single invalidations are expected, even as the number
of processors is increased. We note that a large number of
these invalidations could be avoided if the processors (or the
software) were to flush the data items out of their cache when
the data were no longer needed.

Mostly-read data have potential for causing a large number
of invalidations, since each write is preceded by several reads
from multiple processors. The average number of invalidations
caused by each write is thus high. Fortunately, writes to this
kind of data are infrequent and hence the total invalidation
traffic is not very large. With more processors, we expect an
increase in the average number of invalidations per shared
write, because it is likely that more processors will have
touched the data object before a write to it takes place.
This effect may be partially mitigated by taking advantage
of locality, that is, by partitioning the data set and tasks such
that each data portion is referenced by only a small subset of
the processors.

Frequently read and written data present a big problem
in terms of invalidations. Not only does each write cause
several invalidations, but writes are also frequent. Frequently
read/written data are expected to show increased invalidations
as more processors are used, because more reads and more
writes to the data items will take place. If possible, this type
of data object should be avoided for parallel applications with
a large number of processes. However, as in the case of high-
contention synchronization objects, some hardware support
such as fetch&op primitives [14], can reduce invalidation
traffic.

Synchronization objects are found in all parallel applica-
tions. In well-designed applications contention for the critical
sections protected by the locks is minimal and thus the
invalidation traffic caused by the locks is small. As multipro-
cessors are scaled, it may not always be possible to avoid
high-contention synchronization objects. Invalidation traffic
can then be reduced by means of various hardware/software
support features. For example, high-contention locks with
many processes waiting can be implemented using queueing
focks [13]. These locks release waiting processes one by
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one without causing large invalidations. Similarly, if the
directory has only a few pointers per entry, the compiler may
construct fan-in and fan-out trees for implementing barriers,
thus reducing both the latency and the frequency with which
the pointer overflow mechanism is triggered [28].

Experiments with various cache line sizes indicate that best
invalidation behavior is achieved when the cache line matches
the size of the data objects being shared. Both line sizes
that are too small and line sizes that are too large can drive
up the number of invalidations. When the line sizes are too
small, each migration of an object causes several invalidations.
When they are too large, false sharing may lead to additional
invalidations. In terms of overall traffic, we find that the
number of messages typically decreases as the line size is
increased. However, since data message get larger, there is
an intermediate line size that yields minimum overall traffic.
Our data show that a line size of 32 bytes is quite reasonable
for large-scale multiprocessors. This line size allows efficient
transfer of data across a relatively high-latency network, and
it is also likely to increase performance due to prefetch. The
negative effects of a large line size, namely slightly larger
invalidations as well as increased traffic, are still tolerable at
this cache line size.

In summary, in this paper we have presented data about the
invalidation patterns of five applications using 8, 16, and 32
processor runs. We have introduced a classification of data
objects by invalidation behavior. This serves as a concep-
tual aid for reasoning about and predicting the invalidation
behavior of an application. The classification is also useful
for predicting the invalidation behavior beyond the number
of processors currently simulated. Such extrapolations suggest
that the average number of invalidations per invalidating
write will remain small for well-designed applications, thus
supporting the use of directory-based cache-coherence for
large-scale multiprocessors. Effort has to be put into limiting
contention over synchronization objects, exploiting locality,
and reducing frequently read/written data objects. Finally, line
size studies have shown that the overall message traffic is
minimum (or close to minimum) when a cache line size of
32 bytes is used.
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