Losses Due to Misses in Shared-Memory Multiprocessors

What We Found Out

• OS Misses: Instructions, Block Ops., Migration

• OS Self-Interference in the I-Cache

OS Synchronization: High Locality, Low Contention

Outline

1. Experimental Environment

2. Characterization of OS Cache Performance

3. Characterization of OS Synchronization

Real Multiprocessor + Hardware Monitor

- 33-MHz 4-CPU Silicon Graphics Station (R3000 CPU)
 - Shared Memory
 - 64 KB I-Cache
 - 64 KB + 256 KB D-Cache
 - 30-Cycle Cache Miss Penalty
 - IRIX (UNIX System V): Multithreaded/Symmetric
- Total Info: Hardware Monitor

Collecting Address Traces

• 1-2 Minutes Worth of Uninterrupted Trace

Parallel Workloads Traced

• Pmake Parallel Compile of 56 C Files / 480 Lines Each

• Oracle Cached TP1 Benchmark on an Oracle Database

OS Misses: Stall Time

OS Misses: Components of the Stall Time

Torrellas/Gupta/Hennessy Univ. of Illinois and Stanford

Characterizing the Caching and Synchronization Performance of a Multiprocessor Operating System

A Closer Look at OS Instruction Misses

• OS Code often Self-Interferes in the Cache

• Concentrated in Certain Routines: Try Placement Opts.

Eliminating I-Misses by Changing Cache Parameters

Associativity Has Noticeable Impact

OS Block Operations: Sizes of the Blocks

- Large Regular Blocks Dominate: Try Data Prefetching
- Try Cache Bypassing

OS Data Misses: Sharing and Migration

- Sharing Misses => Big Caches less Effective than Expected
- Migration Misses => Try Cache Affinity Scheduling

OS Synchronization Accesses: Stall Time

Patterns of Access to OS Locks

What the Lock Protects:

Low Contention

High Locality

Summary

• OS Misses: Instructions — Code Layout / Associat.

Block Ops. Prefetching / Bypassing

Migration Affinity Scheduling

• OS Synch.: Small Cost — Cache Support for Locks

Implications for Hierarchical Machines

Replicate OS Executable across Clusters

• Support Efficient Intercluster Block Transfers

• Distribute Run Queue across Clusters

• Distribute Popular Locks across Clusters