
Performance Evaluation of Memory Consistency Models
for Shared-Memory Multiprocessors

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

The memory consistency model supported by a multiprocessor
architecture determines the amount of buffering and pipelining
that may be used to hide or reduce the latency of memory ac-
cesses. Several different consistency models have been pro-
posed. These range fromsequential consistency on one end,
allowing very limited buffering, torelease consistency on the
other end, allowing extensive buffering and pipelining. Thepro-
cessor consistency andweak consistency models fall in between.
The advantage of the less strict models is increased performance
potential. The disadvantage is increased hardware complexity
and a more complex programming model. To make an informed
decision on the above tradeoff requires performance data for the
various models.

This paper addresses the issue of performance benefits from
the above four consistency models. Our results are based on sim-
ulation studies done for three applications. The results show that
in an environment where processor reads are blocking and writes
are buffered, a significant performance increase is achieved from
allowing reads to bypass previous writes. Pipelining of writes,
which determines the rate at which writes are retired from the
write buffer, is of secondary importance. As a result, we show
that the sequential consistency model performs poorly relative
to all other models, while the processor consistency model pro-
vides most of the benefits of the weak and release consistency
models.

1 Introduction

Memory accesses that are not satisfied within the processor envi-
ronment experience long latencies in large scale shared-memory
multiprocessors. Two powerful techniques that can help reduce
or hide this latency are buffering and pipelining of memory ac-
cesses. Unfortunately, the distributed memory, caches, and gen-
eral interconnection networks used by large scale multiproces-
sors [3, 11, 15] can cause multiple requests issued by a processor
to execute out of order. Depending on the memory consistency
model supported, various restrictions are placed on the amount
of buffering and pipelining allowed. Thus, the choice of the
memory consistency model directly affects the performance of
the machine.

Several memory consistency models have been proposed in
the literature. The strictest model issequential consistency (SC)
[10], which requires the execution of a parallel program to appear
as some interleaving of the execution of the parallel processes

on a sequential machine. While conceptually intuitive and ele-
gant, the model imposes severe restrictions on the outstanding
accesses that a process may have, thus restricting the buffer-
ing and pipelining allowed. One of the least strict models is
release consistency (RC) [6], which allows significant overlap
of memory accesses given synchronization accesses are identi-
fied and classified into acquires and releases. Two other models
that have been discussed in the literature areprocessor consis-
tency (PC) [6, 8] andweak consistency (WC) [4, 5]. These fall
between sequential and release consistency models in terms of
strictness.

While the less strict models provide a higher potential for
performance, they also require more complicated hardware and
result in a more complex programming model. Data indicating
the performance achieved under each of the above models is
essential in allowing a system designer to make an appropriate
decision on the model to support. So far, detailed performance
data has not been available. This paper presents simulation re-
sults comparing the performance of these consistency models
based on three engineering applications. The applications are
a particle-based simulator used in aeronautics (MP3D) [13], an
LU-decomposition program (LU), and a digital logic simulation
program (PTHOR) [18]. The simulated architecture is based on
the Stanford DASH multiprocessor [11].

Our results show that in an architecture with blocking reads
and buffered writes (typical for current commercial microproces-
sors), the sequential consistency model does significantly worse
than all other models. While this is somewhat expected, the
surprising result is that the processor consistency model does
almost as well as the release consistency model, and for one of
the benchmarks, better than the weak consistency model. These
results indicate that the gain from allowing reads to bypass pend-
ing writes (allowed in PC, WC, and RC) is much more important
than allowing writes to be pipelined (allowed in WC and RC).

The next two sections present a description of the class of
multiprocessor architectures, the simulation environment, and the
benchmark applications used in this study. Section 4 presents
background information and an implementation-oriented view
of the consistency models. Simulation results are presented in
Section 5. Section 6 explores the effects of prefetching on the
models. A general discussion about the results and the related
work is given in Sections 7 and 8. Finally, we conclude in
Section 9.

1

2 Multiprocessor Architecture and Sim-
ulator

To enable meaningful performance comparisons between the
models it is necessary to focus on a specific class of multi-
processor architectures. The reason is that tradeoffs may vary
depending on the architecture chosen. For example, the tradeoffs
for a small bus-based multiprocessor where broadcast is possi-
ble and miss latencies are ten to twenty cycles are quite different
than the tradeoffs for a large scale multiprocessor where broad-
cast is not possible and miss latencies may be a hundred or more
cycles.

For our study, we have chosen an architecture that resembles
the DASH shared-memory multiprocessor [11], a large scale
cache-coherent machine currently being built at Stanford. We
use the actual parameters from the DASH prototype wherever
possible, but have removed some of the limitations that were
imposed on the DASH prototype due to design-time constraints.
Figure 1 shows the high-level organization of the simulated ar-
chitecture, which consists of several processing nodes connected
through a low-latency scalable interconnection network. Physi-
cal memory is distributed among the nodes and cache coherence
is maintained using a distributed directory-based protocol. For
each memory block, the directory keeps track of remote nodes
caching the block, and point-to-point messages are sent to in-
validate remote copies. Acknowledgement messages are used to
inform the originating processing node when an invalidation has
been completed. Although the DASH prototype has four pro-
cessors within each node, we simulate an architecture with only
one processor per node. This allows us to isolate the effect of
the consistency models more clearly.

Due to the distribution of the memory system and the general
interconnection network in this architecture, two accesses that
are issued in order may complete in a different order. For exam-
ple, if a producer process writes a variable and then sets a flag,
the consumer process may see the flag set while still holding a
stale value of the variable in its cache. To preserve the desired
order, the setting of the flag can be delayed until the write to
the variable is performed. In the simulated architecture, a read
is consideredperformed when the return value is bound and can
not be modified by other write operations. Similarly, a write is
consideredperformed when exclusive ownership is acquired and
all other copies have been invalidated. For simplicity, we assume
writes are atomic [5]. The architecture provides a mechanism to
keep track of multiple outstanding accesses for each processor
and allows for the processor to be stalled until all pending ac-
cesses have performed (for details, see [6]). The notion of being
performed and having completed will be used interchangeably
in the rest of the paper.

Figure 1 also shows the organization of the processor envi-
ronment. Each CPU in the system contains a 64 Kbyte write-
through data cache. The write-through cache enables processors
to do single cycle write operations. The first-level data cache
interfaces to a 256-Kbyte second-level write-back cache. The in-
terface consists of a read buffer and a write buffer. Both the first
and second-level caches are direct-mapped and support 16-byte
lines.

In the above architecture, the processor or the write buffer may
be stalled due to constraints imposed by the consistency model or
purely due to implementation constraints. For example, although
a consistency model may allow multiple outstanding accesses,
the implementation of the cache may not allow this. To sepa-
rate out the consistency model issues from the implementation

Directory
Memory

&
Controller

Processor

Cache

Memory

In
te

rc
o

n
n

e
ct

io
n

 N
e

tw
o

rk

Directory
Memory

&
Controller

Processor

Cache

Memory

Architecture

Processor

Cache
Primary

Secondary
Cache

Write
Buffer

STORESLOADS

Processor Environment

Figure 1: The simulated architecture and processor environment.

decisions, we will examine the performance of the models un-
der implementations of varying aggressiveness. We will consider
three versions of the implementation: (i) LFC, an aggressive im-
plementation with lockup-free caches [9, 16], reads that bypass
the write buffer, and a 16 word deep write buffer; (ii) RDBYP,
which is the same as LFC, except caches are no longer lockup-
free; and (iii) BASIC, which is the same as RDBYP, except that
reads are not allowed to bypass the write buffer. Lockup-free
caches allow multiple accesses to be in service simultaneously,
as opposed to servicing one access at a time. Unless stated oth-
erwise, all performance comparisons will use the LFC version
of the CPU, since it minimizes shortcomings due to the imple-
mentation.

For our studies, an event-driven simulator is used to simulate
the major components of the DASH architecture at a behavioral
level. The simulations are based on a 16 processor configura-
tion. The simulator is tightly coupled to the Tango [7] reference
generator to assure a correct interleaving of accesses. For exam-
ple, a process doing a read operation is blocked until that read
completes, where the latency of the read is determined by the
architecture simulator. Main memory is distributed across all
nodes and allocated using a round-robin scheme for the applica-
tions.

The latency of a memory access in the simulated architecture
depends on where in the memory hierarchy the access is serviced.
Table 1 shows the latency for servicing an access at different lev-
els of the hierarchy, in the absence of contention (the simulation
results include the effect of contention, however). The latency
shown for writes is the time for acquiring exclusive ownership of
the line, which does not necessarily include the time for receiving
acknowledgement messages from invalidations. The following
naming convention is used for describing the memory hierarchy.
The local node is the node that contains the processor originating
a given request, while thehome node is the node that contains
the main memory and directory for the given physical memory
address. Aremote node is any other node.

Synchronization primitives are also modeled after DASH. The
queue-based lock primitive [11] is used for supporting locks. In
general, locks are not cached except when a processor is spin-
ning on a locked value. When the lock is released, if there are
any waiting processors, one is chosen at random and is granted

Page 2

Table 1: Latency for various memory system operations in pro-
cessor clocks. Numbers are based on 25MHz processors.

Read Operations
Hit in Primary Cache 1 pclock
Fill from Secondary Cache 12 pclock
Fill from Local Node 22 pclock
Fill from Remote Node 61 pclock
Fill from Dirty Remote, Remote Home 80 pclock

Write Operations
Owned by Secondary Cache 2 pclock
Owned by Local Node 17 pclock
Owned in Remote Node 57 pclock
Owned in Dirty Remote, Remote Home76 pclock

the lock using an update message. Acquiring a free lock takes
18 and 59 processor cycles for local and remote locks, respec-
tively. Barriers are implemented using fetch-and-increments in
the gather stage and using update writes for releasing the waiters.
The total latency to perform a barrier for 16 processors, given
all reach the barrier at the same time, is about 330 processor
cycles.

3 Benchmark Applications

The programs chosen for this evaluation represent applications
used in an engineering computing environment. All of the ap-
plications are written in C and use the synchronization primi-
tives provided by the Argonne National Laboratory macro pack-
age [12]. The three applications that we study are MP3D, LU,
and PTHOR.

MP3D [13] is a 3-dimensional particle simulator. It is used to
study the pressure and temperature profiles created as an object
flies at high speed through the upper atmosphere. The overall
computation of MP3D consists of evaluating the positions and
velocities of molecules over a sequence of time steps. During
each time step, the molecules are picked up one at a time and
moved according to their velocity vectors. If two particles come
close to each other, they may undergo a collision based on a
probabilistic model. Collisions with the object and the bound-
aries are also modeled. The simulator is well suited to paral-
lelization because each molecule can be treated independently
at each time step. The main synchronization consists of barri-
ers between each time step. For our experiments we ran MP3D
with 10,000 particles, a 64x8x8 space array, and simulated 5
time steps.

LU performs LU-decomposition for dense matrices. The pri-
mary data structure in LU is the matrix being decomposed.
Working from left to right, a column is used to modify all
columns to its right. Once all columns to the left of a column
have modified that column, it can be used to modify the remain-
ing columns. Columns are statically assigned to the processors
in an interleaved fashion. Each processor waits until a column
has been produced, and then that column is used to modify all
columns that the processor owns. Once a processor completes a
column, it releases any processors waiting for that column. For
our experiments we performed LU-decomposition on a 200x200
matrix.

PTHOR [18] is a parallel distributed-time logic simulator
based on the Chandy-Misra simulation algorithm. The primary
data structures associated with the simulator are the logic ele-
ments (e.g., AND-gates, flip-flops), the nets (wires linking the

Table 2: General statistics on the benchmarks.

Program Busy Cycles Shared References Processor
(�1,000) (�1,000) Utilization

on IDEAL

MP3D 6,400 2,087 98.8
LU 27,728 8,276 94.1
PTHOR 89,984 22,556 96.2

elements), and the task queues which contain activated elements.
Each processor executes the following loop. It removes an ac-
tivated element from one of its task queues and determines the
changes on that element’s outputs. It then looks up the net data
structure to determine which elements are affected by the out-
put change and schedules the newly activated elements on to
task queues. For our experiments we simulated fifteen clock cy-
cles of a multiplier circuit consisting of the equivalent of 5000
two-input gates.

Table 2 presents some general information about the three ap-
plications. To minimize the architectural dependence for such
measurements, a latency of one cycle was assumed for all ac-
cesses (we will refer to this as the IDEAL architecture). Busy
cycles specify the amount of useful cycles in the program, while
shared references indicates the number of read, write, and syn-
chronization accesses issued by the program. The high processor
utilization on the IDEAL architecture implies there is sufficient
parallelism in the algorithms for 16 processors. Table 3 presents
more detailed statistics on the access behavior of the applications.
The rate of read and write misses and the rate of synchronization
are important factors in determining the relative performance of
the models. Table 3 shows that MP3D and PTHOR have rel-
atively high miss rates, while the miss rates are substantially
lower in LU. In the case of LU, the caches are large enough to
hold the matrix completely and the application does not have a
lot of communication. For all three application, the number of
read misses is higher than the number of write misses. Finally,
PTHOR is shown to have the highest rate of synchronization
compared to the other two applications.

4 Consistency Models and Their Imple-
mentation

This section provides a general overview of the consistency mod-
els. We also describe the implementation restrictions that are
imposed by each model. The main goal of this section is to
develop intuition about situations in which the less strict models
are expected to perform better. The contents of this section will
also form the basis of arguments used to explain simulation data
in the following sections.

4.1 General Overview

A consistency model imposes restrictions on the order of shared
memory accesses initiated by each process. The strictest model,
originally proposed by Lamport [10], is sequential consistency
(SC). Sequential consistency requires the execution of a parallel
program to appear as some interleaving of the execution of the
parallel processes on a sequential machine. Processor consis-
tency (PC) was proposed by Goodman [8] to relax some of the
restrictions imposed by sequential consistency. Processor con-
sistency requires that writes issued from a processor may not

Page 3

Table 3: Number of shared read, write, and synchronization accesses for a 16 processor configuration.
Numbers in parentheses are rates given as references per thousand cycles on the IDEAL architecture.

Program reads writes r/w read misses write misses rmiss/wmiss locks unlocks barriers
(�1,000) (�1,000) ratio (�1,000) (�1,000) ratio

MP3D 1,454 633 2.3 210 151 1.4 0 0 560
(227) (99) (33) (24) (0.0) (0.0) (0.09)

LU 5,543 2,727 2.0 254 75 3.4 3,184 3,184 32
(200) (98) (9.2) (2.7) (0.1) (0.1) (0.00)

PTHOR 19,576 2,240 8.7 2,267 935 2.4 360,269 360,269 19,536
(218) (25) (25) (10) (4.0) (4.0) (0.22)

be observed in any order other than that in which they were is-
sued. However, the order in which writes from two processors
occur, as observed by themselves or a third processor, need not
be identical. The constraints to satisfy processor consistency are
specified formally in [6].

A more relaxed consistency model can be derived by relating
memory request ordering to synchronization points in the pro-
gram. The weak consistency model (WC) proposed by Dubois et
al. [4, 5] is based on the above idea and ensures that memory is
consistent only at synchronization points. As an example, con-
sider a process updating a data structure within a critical section.
Under SC, every access within the critical section is delayed until
the previous access completes. But such delays are unnecessary
if the programmer has already made sure that no other process
can rely on the data structure to be consistent until the critical
section is exited. Weak consistency exploits this by allowing
accesses within the critical section to be pipelined. Correctness
is achieved by guaranteeing that all previous accesses are per-
formed at the beginning and end of each critical section.

Release consistency (RC) [6] is an extension of weak consis-
tency that exploits further information about synchronization by
classifying them into acquire and release accesses. Anacquire
synchronization access (e.g., a lock operation or a process spin-
ning for a flag to be set) is performed to gain access to a set of
shared locations. Arelease synchronization access (e.g., an un-
lock operation or a process setting a flag) grants this permission.
An acquire is accomplished by reading a shared location until
an appropriate value is read. Thus, an acquire is always associ-
ated with a read synchronization access (see [6] for discussion
of read-modify-write accesses). Similarly, a release is always
associated with a write synchronization access. In contrast to
WC, RC does not require accesses following a release to be de-
layed for the release to complete; the purpose of the release is to
signal that previous accesses are complete, and it does not have
anything to say about the ordering of the accesses following it.
Similarly, RC does not require an acquire to be delayed for its
previous accesses.

Figure 2 shows the restrictions imposed by each of the four
consistency models studied in the paper.1 The ordering restric-
tions are presented in terms of when an access is allowed to
perform. As shown, sequential consistency can be guaranteed
by requiring shared accesses to perform in program order. Pro-
cessor consistency allows more flexibility over SC by allowing
read operations to bypass previous write operations. Weak con-
sistency and release consistency differ from SC and PC in that
they exploit information about synchronization accesses. Both
WC and RC allow accesses between two synchronization opera-

1The weak consistency and release consistency models shown are the
WCsc and RCpc models, respectively, in the terminology presented in [6].

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

Weak Consistency (WC)

4

1

2

3

5

6

7

ACQUIRE A

ACQUIRE B

RELEASE B

RELEASE A

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

LOAD/STORE

Release Consistency (RC)

1

42

3

5

7

6

ACQUIRE A

RELEASE A

ACQUIRE B

RELEASE B

Sequential Consistency (SC)

LOAD

LOAD STORE

LOAD

LOAD

STORE

STORE

STORE

Processor Consistency (PC)

LOAD

LOAD STORE

LOAD

LOAD

STORE

STORE

STORE

u

v

v cannot perform
until u is performed

LOAD/STORE

LOAD/STORE

LOADs and STOREs can
perform in any order as long
as local data and control
dependences are observed

Figure 2: Ordering restrictions on memory accesses.

tions to be pipelined, as shown in Figure 2. The numbers on the
blocks denote the order in which the accesses occur in program
order. The figure shows that RC provides further flexibility by
exploiting information about the type of synchronization.

4.2 Implementation Oriented View

Table 4 summarizes the implementation restrictions imposed by
each of the models given processors with blocking reads (these
are sufficient, but not necessary, restrictions for satisfying each
model). A BASE model has been added to the four consistency
models discussed earlier. This is the most constrained model and
is used as baseline for all performance comparisons. It incorpo-
rates no buffering or pipelining and waits for each read and write
to complete before proceeding. The implementation restrictions
are considerably simplified for processors that block on loads
(typical of most commercial microprocessors). All consistency
model constraints, where an access must block for a preceding
load or acquire, are automatically satisfied.

To qualitatively compare the performance of the consistency
models, consider the sources of idle time for a processor. At
the architecture level, the idle time consists of (i) read accesses

Page 4

Table 4: Implementation of consistency models.

Operation BASE SC PC WC RC

1. Read

(a) Processor issues
read and stalls for read
to perform.

Note:
(i) No pending writes
are possible. See point
2.

(a) Processor stalls for
pending writes to per-
form (or,
in very aggressive im-
plementations, to gain
ownership [1]).

(b) Processor issues
read and stalls for read
to perform.

(a) Processor issues
read and stalls for read
to perform.

Note:
(i) Reads
are allowed to bypass
pending writes.

(a) Processor issues
read and stalls for read
to perform.

Notes:
(i) Reads
are allowed to bypass
pending writes.
(ii) For interaction with
pending releases, see
point 4.

(a) Processor issues
read and stalls for read
to perform.

Note:
(i) Reads
are allowed to bypass
pending writes and re-
leases.

2. Write

(a) Processor issues
write and stalls for
write to perform.

Note:
(i) No need for write
buffer.

(a) Processor sends write to write buffer (stalls
if write buffer is full).

Note:
(i) Write buffer retires a write only after the
write is performed, or in very aggressive im-
plementations, when ownership is gained [1].

(a) Processor sends write to write buffer (stalls
if write buffer is full).

Notes:
(i) Write buffer does not require ownership to
be gained before retiring a write.
(ii) For interaction with acquires/releases, see
points 3,4.

3. Acquire Treated as Read Treated as Read Treated as Read

(a) Processor stalls for
pending writes and re-
leases to perform.

(b) Processor issues ac-
quire and stalls for ac-
quire to perform.

(a) Processor issues ac-
quire and stalls for ac-
quire to perform.

Note:
(i) Processor does not
need to stall for pend-
ing writes and releases.

4. Release Treated as Write Treated as Write Treated as Write

(a) Processor sends re-
lease to write buffer
(stalls if write buffer is
full).

Notes:
(i) Write buffer can not
retire the release until
all previous writes are
performed.
(ii) Write buffer stalls
for release to perform.
(iii) Processor stalls at
next read after release
for release to perform.

(a) Processor sends re-
lease to write buffer
(stalls if write buffer is
full).

Note:
(i) Write buffer can not
retire the release until
all previous writes and
releases are performed.

stalling for data, (ii) processor stalling for previous writes (or
releases) to complete, (iii) write (or release) accesses stalling
when write buffer is full, and (iv) acquire accesses spinning
until the corresponding release is observed. The performance
with a particular consistency model depends on how effective
the model is in reducing this idle time.

Let us first compare the BASE and SC models as shown in
Table 4. While both models guarantee sequential consistency,
SC is a more aggressive formulation. The main difference is in
how writes are treated. For the BASE model, the processor stalls
immediately after each write until the write completes. With SC,
the writes are put in the write buffer and the processor is stalled
at the following read operation instead. As a result, part of the
write latency can be overlapped with computation up to the next
read. In most cases, however, a read access occurs soon after
a write miss, and most of the latency for completing the write
miss is seen by the processor.

Between the SC and PC models, the major difference is that
PC allows reads to be performed without waiting for pending
writes in the write buffer. This significantly decreases the to-
tal delay experienced by the processor, thus increasing the per-
formance. Of course, one side effect is that there is a higher
probability that the write buffer may get full and stall the pro-
cessor in PC. As will be shown in the simulation results section,

this rarely happens in practice. The reason for this is intuitive:
write misses are well interleaved with read misses rather than
being clustered, and the number of read misses usually domi-
nates. Since the processor has blocking reads, the stall duration
for read misses provides time for write misses to be retired from
the write buffer, thus preventing it from getting full.

Comparing the PC and WC models, the WC model exploits
knowledge about synchronization accesses. In PC, the order
among write accesses has to be preserved. In WC, however,
reads and writes between two synchronization accesses can be
performed in any order provided uniprocessor control and data
dependences are maintained. As a result, reads can bypass
writes, as in the case of PC. However, in contrast to PC, writes
can be pipelined. The pipelining allows writes to be retired
from the write buffer without requiring ownership to be obtained.
Thus the writes can be retired at a much faster rate than is pos-
sible in PC. This can help performance in two ways. First, the
chances of the write buffer filling up and stalling the processor
are smaller compared to PC. Second, if there is a release oper-
ation (e.g., unlock operation) behind several writes in the write
buffer, then a remote processor trying to do an acquire (e.g.,
lock on the same variable) can observe the release sooner, thus
spinning for a shorter amount of time. Although the release op-
eration in WC must wait until all invalidations have completed

Page 5

for the previous writes, it does allow the invalidations for multi-
ple writes to be overlapped. These reasons indicate that WC will
provide performance advantages over PC if there is a significant
clustering of writes, especially if the clustering is before release
accesses.

The disadvantage of WC as compared to PC is the following.
In PC, the processor is never stalled at a read (or acquire) for
pending writes (or release) to be performed. However, in WC,
the processor stalls at an acquire for previous writes or releases
to complete, and at the first read access after a release for the
release to complete. This can seriously degrade performance
if the application has a high rate of synchronization. We will
show in the results section that for one of the programs that uses
fine-grain synchronization (PTHOR), WC does worse than PC.

Finally, comparing WC and RC, the RC model removes the
shortcoming of WC described above. Similar to PC, RC never
stalls the processor at a read or an acquire for previous writes
or releases to complete. Consequently, RC can offer the best
performance of all models. However, as in the case of WC, the
performance gains over PC occur only when there is a significant
clustering of writes.

The performance gains from relaxing the consistency model
are accompanied by a more complex implementation. The im-
plementation difference among the models arises from the dif-
ferent number of outstanding requests allowed by each model.
For the implementation to allow multiple outstanding requests,
the cache needs to be lockup-free. In addition, there needs to
be a mechanism for keeping track of each outstanding request
to know when the request is complete. BASE and SC do not
require a lockup-free cache since at most one outstanding access
is allowed. PC can at most have one read and one write access
outstanding. WC and RC allow multiple outstanding accesses
(blocking reads limit the number of outstanding read accesses
to one, however). The lockup-free cache for PC is simpler than
for WC and RC since there are at most two accesses, a read and
a write, outstanding at any time. Furthermore, WC and RC re-
quire additional counters to keep track of when the outstanding
accesses are complete (see [6] for more details).

There are several secondary effects that are not discussed
above. For example, less strict models allow accesses to be
issued at a faster rate that in turn may result in more contention
at the network or in the memory system, thus increasing the la-
tency of accesses. This may offset the gains from the less strict
models. We will further discuss the impact of such side effects
in the next section.

5 Simulation Results

In this section, we present a comparative analysis of the perfor-
mance achieved by the various consistency models. Section 5.1
presents simulations for the LFC architecture described in Sec-
tion 2. Since LFC is the most aggressive architecture, the re-
sults are primarily affected by the constraints imposed by the
consistency model and not by limitations of the implementation.
Section 5.2 presents results on the relative performance of the
models for less aggressive implementations.

5.1 Results on the LFC Architecture

Figure 3 shows the relative performance of the models for each
application. For the purposes of this paper, we define perfor-
mance as the processor utilization achieved in an execution. The

| | | | | | ||-10

|0

|10

|20

|30

|40

|50 | | | | | | |

|
|

|
|

|
|

|

 Consistency Model

 P
er

fo
rm

an
ce

 G
ai

n
 o

ve
r

B
A

S
E

MP3D

PTHOR

LU

BASE SC PC WC RC

�
�

� � �

�

�

�

�

�

�

�

�

� �

Figure 3: Relative performance of models on LFC.

reason for using processor utilization as the figure of merit is that
it provides reasonable results even when the program’s control
path is not deterministic and depends on relative timing of syn-
chronization accesses. The processor utilization for each model
is normalized to the performance of the BASE model for that
program. The results show a wide range of performance gains
due to the less strict models. Moving from BASE to SC, the
gains are minimal. The largest gains in performance arise when
moving from SC to PC. Surprisingly, WC does worse than PC
for PTHOR. RC performs better than all the other models, but
the gains over PC are small. The maximum gain from relaxing
the consistency model is about 41% for MP3D, 29% for PTHOR,
and 11% for LU.

To better understand the above results, in Figure 4 we present a
breakdown of the execution time for the applications under each
of the models. The execution time of the models are normalized
to the execution time of BASE for each application. The bottom
section of each column represents the busy time or useful cycles
executed by the processor. The black section above it represents
the time that the processor is stalled waiting for reads. This
time does not include the time that a read/acquire access may
be stalled waiting for previous writes to perform. This time is
represented by the section above it. The three sections on top of
that represent the stalls due to write buffer being full, time spent
spinning while waiting for acquires to complete, and time spent
waiting at a barrier.2

Some general observations that can be made from the break-
down are: (i) the latency of read misses forms a large portion of
the idle time, especially once we move to PC, WC, and RC; (ii)
the major reason for BASE and SC to be worse than the other
models is the stalling of the processor before reads (and acquires)
for pending writes to complete; (iii) the write buffer being full
does not seem to be a factor in hindering the performance of PC;
and finally, (iv) the reason for WC performing worse than PC
and RC is the extra processor stalls at acquires and the first read
after release accesses (as described in Section 4). The small vari-
ation in busy times for PTHOR is due to the non-deterministic
behavior of the application for the same input. We now look at
the comparative performance of the models in greater detail.

2It is difficult to distinguish the shade of some sections with a very small
height. Usually, the small height implies that those sections are not very
important, so they can safely be ignored.

Page 6

Table 5: Statistics on write misses (including releases).

Program Write Miss Fraction Average Fraction Average
Rate for followed Distance followed Distance

BASE (per by a (cycles) by a (cycles)
1000 cycles) Write Miss Read

MP3D 4.2 0.01 3.6 0.99 2.0
LU 1.3 0.01 11.9 0.99 5.9

PTHOR 2.4 0.18 12.6 0.82 5.1

5.1.1 Performance of SC versus BASE

The performance differences between SC and BASE arise from
the fact that SC is able to overlap the latency of write misses
up to the next read access. Thus, the expected gains depend on
the frequency with which write misses occur, and the average
distance between a write miss and the following read. Clustering
of write misses, with no reads in between, also helps SC as the
processor is not stalled.

The data in Figures 3 and 4 show that the SC model does
not perform significantly better than BASE. Table 5 provides
relevant data to explain these results. For executions under the
BASE model it presents: (i) the frequency of write misses per
1000 cycles; (ii) the fraction of write misses that were followed
by another write miss with no intervening reads (indicates write
clustering) and the average distance between them; and (iii) the
fraction of write misses that were followed by reads and the
average distance between the two.

Given the contents of Table 5, the reasons for the relative
performance gains of the applications are apparent. In MP3D we
see that although the frequency of write misses is relatively high,
the writes are almost immediately followed by a read access—
the read is on average 2 cycles away. Thus the complete write
miss penalty of about 75 cycles is observed by the read. In the
case of LU the gains are small because the write miss rate is
low, and again, the read follows the write miss within 6 cycles.
In PTHOR, there is some write clustering observed, and the
distance between write misses is larger. Consequently, the gain
is higher than in MP3D and LU.3

In general, we expect performance gains from BASE to SC
to be small for most applications. This is because reads are ex-
pected to be closely interleaved with writes. Significant write
clustering may occur sometimes, for example, when initializing
data structures, but such occurrences are expected to be infre-
quent.

5.1.2 Performance of PC versus SC and BASE

PC is the first model where sequential consistency is abandoned.
For this extra complexity in the programming model, what are
the benefits? The main benefit comes from the fact that reads do
not have to stall for pending writes to perform. However, some
of the benefits may be lost if the write buffer gets full and stalls
the processor. As we will show later, this second factor turns
out not to be an issue.

Focusing on the magnitude of gains from PC, the gains will be
large if the frequency of write misses is high or the cost of write

3The results for BASE are slightly pessimistic due to the extra write hit
latency of the two-level cache structure assumed in our simulations. This is
because BASE stalls the processor on every write, including write hits. SC
is less sensitive to this effect since writes are buffered and there is usually
enough computation to overlap the small latency of write hits.

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 MP3D

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e barrier

 3.6 3.6

 3.4 3.3 3.3

33.3 32.2

46.0 46.3 50.8 50.7 50.7

17.1 17.1 17.1 17.1 17.1

100.0 99.3

71.2 71.0 71.0

BASE SC PC WC RC

lock
write-buffer full
stall before read/acq
read
busy

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 LU

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e barrier

10.8 9.9
 8.5

 6.2 6.2 1.2 8.4 7.2 0.2

37.9 37.9 41.9 40.8 40.7

42.9 42.9 42.9 42.9 42.9

100.0 97.9
94.5

90.1 89.7

BASE SC PC WC RC

lock
write-buffer full
stall before read/acq
read
busy

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

 PTHOR

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e barrier

 6.2
 6.5

 7.4
 7.1

 6.3

14.5
13.5

19.6

10.6

14.8

 0.2

 0.7 0.1

25.5 21.6
13.3

37.0 36.5 35.8 36.8 37.4

16.8 16.6 16.3 16.2 16.2

100.0
94.9

79.8
84.1

74.8

BASE SC PC WC RC

lock
write-buffer full
stall before read/acq
read
busy

Figure 4: Breakdown of execution time on LFC.

misses is high. Since the cost of write misses is about the same
for all applications, the relative gains depend primarily on the
frequency of misses. From Table 5 we see that for the BASE
architecture, the frequency of write misses (including release

Page 7

 LU
 MP3D
 PTHOR

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

 Number of Write Misses

 P
er

ce
n

ta
g

e
o

f
R

ea
d

 M
is

se
s

0 1 2 3 4 5

Figure 5: Distribution of write misses (including releases) be-
tween read misses (including acquires).

accesses) per 1000 cycles is 4.2 for MP3D, 1.3 for LU, and
2.4 for PTHOR. Consequently, we should expect large gains for
MP3D, medium gains for PTHOR, and small gains for LU. This
is indeed the case, as can be seen from Figures 3 and 4.

Another secondary effect also becomes apparent from Fig-
ure 4. Since time is compressed in PC, that is, the same number
of useful instructions is executed in a shorter time compared
to BASE, congestion in the memory system increases and read
latencies go up. For example, for MP3D, the fraction of (normal-
ized) cycles spent on read misses goes up from 46% to 51% as
we move from BASE to PC. Consequently, some of the savings
due to hiding write miss latencies are lost.

We now return to the issue of the write buffer being full.
Although difficult to make out from Figure 4, the write buffer
stall times are negligible for MP3D, 1.2% for LU, and 0.7%
for PTHOR. These numbers are small primarily because: (i) the
multiprocessor has blocking reads, and (ii) the number of read
misses is larger than the number of write misses (see Table 3).
As a result, on average, there is enough time for the write buffer
to retire writes while the processor is stalled for read misses.
Of course, the write buffer can build up for short periods of
time due to clustered writes, but in our benchmark applications
we did not see significant clustering. Some indication of the
interleaving of read and write misses is given by the data in
Figure 5 which is a histogram of the number of write misses
between read miss pairs. The data shows that read misses and
write misses are well interleaved. In Figure 6, we show the
fill depth of the write buffer as encountered by write accesses
for each of the applications. The write buffer depth of 16 used
in our simulated architecture seems more than sufficient for the
clustering present in the applications.

In summary, we see that the PC model is relatively successful
in hiding almost all of the latency of writes given a reasonably
deep write buffer. Since the comparison of PC and WC is more
involved than the comparison with RC, we next examine PC
versus RC. Subsequently, we compare PC and WC.

5.1.3 Performance of PC versus RC

The RC model provides all the performance benefits of the PC
model. In addition, by exploiting information about the synchro-
nization accesses, it allows pipelining of writes. That is, writes
can be retired from the write buffer before ownership has been

 LU
 MP3D
 PTHOR

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Write Buffer Depth

 P
er

ce
n

ta
g

e
o

f
W

ri
te

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6: Distribution of writes in the write buffer for PC.

obtained. The fact that writes are retired at a faster rate has two
implications: (i) the write buffer becoming full is less of a prob-
lem, and (ii) in cases where a release operation is behind several
writes in the write buffer, that release can be observed sooner by
a processor waiting to do an acquire. As was discussed in the
previous subsection, the write buffer getting full is really not a
problem for PC. Therefore, most gains, if observed, will be due
to faster completion of synchronization.

Figure 3 shows that the performance of MP3D is comparable
under PC and RC. As can be seen from Figure 4, PC is not
stalled due to a full write buffer in MP3D, and the idle time
corresponding to synchronization is approximately the same for
the two models. In MP3D, the rate of synchronization is too
small to have an effect, and thus the benefits of RC are negligible.

In contrast to MP3D, LU and PTHOR do exhibit a small per-
formance gain from PC to RC. For LU, the idle time breakdown
shows that the difference is mainly due to faster synchroniza-
tion and because RC does not have write buffer stalls (a gain
of about 2.3% and 1.2%, respectively, as shown in Figure 4).
In LU, processors synchronize waiting for the pivot column to
become ready. The processor updating the pivot column does
a series of writes before doing the release operation, indicating
that the column is ready. By allowing pipelining of writes, RC
allows the release to be issued earlier and thus reduces the syn-
chronization time. The detailed simulation statistics show that
the average waiting time for gaining access to a column goes
down from 1730 cycles under PC to 1250 cycles for RC. The
large waiting times in LU are due to the slight load imbalance
in the application (see Table 2).

The idle time breakdown for PTHOR also shows that most
of the performance gain is due to faster synchronization (about
4.8% in normalized cycles). Indeed, simulations show that the
average time to obtain a lock goes down from 285 cycles for PC
to 218 cycles for RC. The faster time for synchronization occurs
because PTHOR exploits fine-grain synchronization with tight
producer-consumer relationships. Although PTHOR has a very
high rate of synchronization, several of the releases (unlocks) are
not in the critical path, that is, there is usually no process waiting
for the lock to be released. Therefore, the gains from making
releases visible slightly earlier is not as large as would otherwise
be expected. Barriers also take slightly less time under RC. The

Page 8

total time for read misses has gone up, however. A closer look
at the simulation statistics shows that the increase in the read
miss idle time was due to a larger number of read misses. This
is most probably due to the fact that the program took a slightly
different execution path under RC.

5.1.4 Performance of WC versus PC and RC

We first compare WC to RC and explain why WC performs
worse than RC. The differences between WC and RC arise be-
cause WC does not differentiate between acquire and release
synchronization operations. Consequently, any synchronization
operation must conservatively satisfy the constraints of both re-
lease and acquire. Thus, compared to RC, WC stalls the pro-
cessor at an acquire until pending writes and releases complete.
In addition, the processor is stalled for pending releases if it
attempts to do a read operation.

The results in Figure 3 show that MP3D and LU perform com-
parably under WC and RC. The reason is that MP3D and LU
have very low synchronization rates (about once every 10,000
cycles on the IDEAL architecture). Therefore, the few extra
stalls in WC do not substantially increase the idle time. How-
ever, for PTHOR, RC performs noticeably better than WC since
PTHOR has a much higher synchronization rate.

To understand the performance of PTHOR better, we gathered
data regarding the extra stalls introduced by WC over RC. We
found that there is frequently a write miss or release about 20
cycles before an acquire operation. Similarly, there is a read
access within a small number of cycles after a release. Therefore,
at most 20 cycles of the latency of the write miss or release could
be hidden and the rest of the latency is visible to the processor.
More detailed data show that virtually all releases caused a delay
for the next read and 30% of the acquires were delayed due to
previous write misses.

We now compare WC and PC and explain the surprising re-
sult that PC sometimes performs better than WC. WC has the
advantage that writes can be retired at a faster rate from the
write buffer. The disadvantage of WC to PC is the same as the
disadvantage of WC to RC, in that WC stalls the processor at
some points for pending writes and releases to perform.

Figure 3 shows that WC performs slightly better than PC for
LU, the same for MP3D, and worse for PTHOR. For LU, the per-
formance is better because pipelining of writes was shown to be
effective in reducing the idle time due to synchronization delays.
In addition, the extra stalls introduced by WC were not an issue
in LU. For MP3D, the discussion on PC and RC explained why
pipelining does not gain anything over PC. In addition, WC is
not hindered due to the extra stalling as described above. This
explains why the two models perform comparably on MP3D.
PTHOR shows an interesting result. In PTHOR, pipelining was
important to reduce the time for synchronization. However, we
also saw that WC causes stalls quite often. The disadvantage of
the stalls turns out to be greater than the advantage of pipelining
writes in this case. Therefore, we see WC performing worse
than PC.

The relative performance of WC as compared to PC and RC
may be affected by the fact that our simulated architecture does
not cache locks. Caching locks is beneficial when a processor
acquires and releases a lock several times with no other proces-
sor accessing the lock in between. All models gain from a faster
acquire if the lock is found in the cache. As for the reduced la-
tency of the release, PC and RC do not benefit since they already
hide write and release latencies. WC, however, can potentially
benefit. This may reduce the difference in performance observed

� � LFC
� � RDBYP
� � BASIC

| | | | | | ||-10

|0

|10

|20

|30

|40

|50

| | | | | | |

|
|

|
|

|
|

|

 Consistency Model

 P
er

fo
rm

an
ce

 G
ai

n
 o

ve
r

B
A

S
IC

 B
A

S
E

BASE SC PC WC RC

� �

� � �

� �

�

� �

� �

�

� �

Figure 7: Performance of MP3D under LFC, RDBYP, and BA-
SIC implementations.

for WC versus PC and RC in PTHOR.

5.2 Effect of Implementation Variations

In the previous section, we evaluated the performance of the
consistency models using an aggressive implementation with
lockup-free caches. The goal was to minimize the influence
of the implementation in the comparison of the models. In this
section, we explore less aggressive implementations and study
their impact on the relative performance of the models.

The three specific implementations we compare are: (i) LFC,
the aggressive implementation studied so far with lockup-free
caches, reads that bypass the write buffer, and a 16 word deep
write buffer; (ii) RDBYP, which is the same as LFC, except
caches are no longer lockup-free; and (iii) BASIC, which is the
same as RDBYP, except that reads are not allowed to bypass the
write buffer.

Figure 7 shows the relative performance of the models for
each implementation for the MP3D application. Results for the
other two applications indicated a similar trend. As before, we
use processor utilization as the figure of merit for performance.
The performance curves are normalized to that for the BASE
model on the BASIC implementation. As shown, BASE and SC
are not affected by these implementation changes since neither
model can exploit lockup-free caches or the bypassing of reads.
However, the performance of PC, WC, and RC experience a
large decline as we move from LFC to RDBYP and a smaller
decline as we go to BASIC. This result shows that lockup-free
caches are essential for realizing the full potential of the less
strict models. Below we analyze these results in more detail.

5.2.1 RDBYP Implementation

Comparing the LFC and RDBYP implementations, we see a
large performance difference (about 20%) for MP3D under the
PC, WC, and RC models. We examine the performance under
PC model first. The only difference between LFC and RDBYP
for PC is that LFC can have both a read miss and a write miss
outstanding, while the RDBYP can have either a read miss or a
write miss outstanding, but not both. Thus, in RDBYP, a read

Page 9

Table 6: Average latency for a read miss (in cycles).

Architecture MP3D LU PTHOR

RDBYP 106 92 91
LFC 89 86 74

miss that follows closely behind a write miss will have to wait
until this previously initiated write access completes, which can
be tens of cycles. The statistics for MP3D show that for over
40% of the read misses in the application, there is a write miss
within 30 cycles before that read miss. In addition, under LFC,
about 55% of the read misses were serviced while there was a
write miss outstanding, hence the large performance difference
between LFC and RDBYP.

The results for WC and RC also show a large decrease in
performance if lockup-free caches are not used. The lockup-free
cache provides two benefits for WC and RC: (i) a read miss is
serviced right away regardless of previous write misses (same as
the benefit for PC), and (ii) write misses are retired at a faster rate
by the write buffer since the cache allows multiple outstanding
accesses. As shown in the previous subsection, the pipelining of
write misses was not effective in increasing the performance of
MP3D. Detailed simulation results show that, under LFC, there
was rarely more than three outstanding requests at any one time
for either WC or RC. Thus, similar to PC, the gain for LFC
comes primarily from the read access not having to stall while
the cache is servicing the previous write miss. Table 6 shows
the average latency of read misses for the two implementations
under RC across all applications. The results show that, indeed,
the latency of read misses is substantially reduced due to the
lockup-free cache.

5.2.2 BASIC Implementation

Comparing the RDBYP and BASIC implementations, we see a
relatively smaller decrease in performance. The obvious advan-
tage of allowing bypassing is that the read miss does not have
to wait for the write buffer to empty before being serviced. The
performance gains from such bypassing depend on the clustering
of write misses before the read miss—the greater the clustering
the bigger the gains.

The detailed simulation statistics for MP3D show that al-
though many read misses have a write miss that occurs shortly
before them, the clustering of such write misses is small. Thus,
the gains of moving from BASIC to RDBYP are small. Finally,
the reason the performance of PC is better than that of SC for
BASIC is the following. In SC, both first-level cache read hits
and read misses are delayed for the write buffer to empty out. In
PC, read hits in the first-level cache are not delayed for pending
writes and only first-level read misses suffer that penalty.

6 Effect of Prefetching on Consistency
Models

The results presented so far in this paper are based on an ar-
chitecture with blocking reads. While the less strict consistency
models are successful in hiding the latency of writes in such an
architecture, nothing is done to alleviate the latency of reads.
Consequently, we see in Figure 4 that a large percentage of the
idle cycles are due to read misses, especially when PC or RC

models are used. In this section, we explore the effects of re-
duced read latency on the relative performance of the models.
In particular, we model a prefetch mechanism similar to that
provided in the DASH architecture [11].

In general, there are two types of prefetching: binding and
non-binding. In binding prefetch, the value of the access is
bound at the time the prefetch is completed. In contrast, a non-
binding prefetch simply brings a copy of the location to a higher
level in the memory hierarchy (closer to the processor). With
a non-binding prefetch, the location is still accessible to the co-
herency mechanism and is kept coherent until the processor ac-
tually binds the value through a regular (binding) access. While
binding prefetching interacts with the consistency models, non-
binding prefetch does not affect the consistency models at all.
Therefore, non-binding prefetch is more flexible, easier to use
(does not affect correctness), and can provide benefits for all
consistency models. Indeed, the prefetch mechanism provided
in DASH is non-binding, and we will assume such a prefetch
mechanism in this section. For a detailed evaluation of non-
binding prefetching, see [14].

The results in this section show that the pipelining of writes al-
lowed by RC (and WC) becomes significantly more important in
achieving high performance once the latency of reads is reduced
through prefetching. Section 6.1 presents simulation results for
ideal prefetching of reads. Section 6.2 provides a more realistic
assessment through a case study of one of the applications in
which prefetching was added to the program.

6.1 Ideal Prefetching Results

We modeled the effects of ideal non-binding prefetch by artifi-
cially making read misses take only one cycle in the simulations
(latency of writes and synchronization was not changed, how-
ever). Figure 8 shows the results of the simulation for the three
applications. The performance of each model is normalized to
that of BASE for each application.

Comparing the prefetching results to those presented in Fig-
ure 3, we see that the pipelining of writes in RC becomes much
more important. This is shown dramatically in the case of
MP3D. While PC performed comparably to RC with no prefetch-
ing, RC is shown to outperform PC significantly once prefetch-
ing is used. Detailed simulation results show that most of the
idle cycles in PC are caused by stalls due to the write buffer
being full. Simulation with a much deeper write buffer did not
show much gain for PC since the rate of write misses was very
large. PTHOR also shows RC performing better than PC once
prefetching is used. Comparing the performance of PC and WC,
PTHOR shows that pipelining of writes became more important
and PC no longer outperforms WC (as in Figure 3). The results
for LU show the same trend as the results in Figure 3, with the
gains due to the less strict models being accentuated.

The results in this section pertain to prefetching for reads. In
an invalidation-based coherence scheme, one can also doread-
exclusive prefetches. The read-exclusive prefetch invalidates
other copies of the location and brings an exclusively owned
copy closer to the processor that issued the prefetch; this re-
duces the latency for both reads and writes. Given non-binding
prefetching, this technique is applicable to all the models. Since
the major performance difference from the models comes from
their effectiveness in reducing and hiding write latency, the re-
duction in the latency of writes through prefetching will in gen-
eral make the difference among the models less pronounced.
Results on the effects of read prefetching and read-exclusive
prefetching for MP3D are presented in the next subsection.

Page 10

| | | | | | ||-10

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

|140 | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 Consistency Model

 P
er

fo
rm

an
ce

 G
ai

n
 o

ve
r

B
A

S
E

MP3D

PTHOR

LU

BASE SC PC WC RC

�
�

�

� �

�
�

�

�

�

�
�

�

� �

Figure 8: Results for ideal read prefetching on LFC.

6.2 Case Study for MP3D

In this subsection, we present results for two versions of MP3D,
one with explicit read prefetching, and another with explicit read
and read-exclusive prefetching. Prefetch instructions were in-
serted in appropriate places in the program. Prefetching within
the simulator is modeled after the way prefetches work in
DASH [11]; the prefetch brings a copy of the location into a
special cache associated with each node. Figure 9 shows the
relative performance of the models. The performance in each
case is normalized to the performance of LFC with the BASE
model. The results show that prefetching benefits the perfor-
mance of all the models. The relative performance of the mod-
els in the case of read prefetching matches well with our results
from ideal prefetching of reads. Clearly, the reduction in the
latency of reads makes the latency due to write misses more
critical and allows WC and RC to perform substantially better
than PC. Simulation results show that there were occasionally
five requests outstanding at the same time. However, once read-
exclusive prefetching is done, the difference between PC and
WC/RC diminishes considerably. Indeed, reducing the latency
of write misses increases the rate at which the write buffer can
retire writes, and thus reduces the chances for a full write buffer.
An interesting observation is that read-exclusive prefetching does
not help WC and RC over read prefetching (see top right of Fig-
ure 9). The reason is that WC and RC are hiding the latency of
writes completely anyway, and therefore reducing the latency of
writes offers no extra performance benefits.

In summary, read and read-exclusive prefetching substantially
improve the performance of all models, including BASE and SC.
We should note, however, that prefetching is not always success-
ful in reducing the latency of accesses [14]. In cases where read
prefetching is successful, we show that the pipelining of writes
becomes more important. We expect read-exclusive prefetching
to also be successful if read prefetching works. Read-exclusive
prefetching is shown to diminish the importance of write pipelin-
ing, thus allowing PC to perform comparably to RC once again.

� � LFC + Read&Read-Exclusive Prefetch
� � LFC + Read Prefetch
� � LFC

| | | | | | ||-10

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120 | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 Consistency Model

 P
er

fo
rm

an
ce

 G
ai

n
 o

ve
r

B
A

S
E

 L
F

C

BASE SC PC WC RC

�
�

�

� �

� �

�

� �

� �

� � �

Figure 9: Read and read-exclusive prefetching in MP3D

7 Discussion

In this section, we discuss the validity of the results presented
in the paper in a broader context. In addition, we briefly point
out other issues and tradeoffs concerning consistency models.

The results presented in this paper were based on a specific
set of architectural parameters and a limited set of benchmarks.
However, we expect many of the conclusions to hold in a broader
context. One of the major conclusions is that, given reads are
blocking, PC performs almost as well as RC. To achieve this,
PC relies on the write buffer not getting full. Intuitively, if write
misses are distributed evenly (as is the case for the applications
studied), there is enough time for the write buffer to retire the
writes given the processor stalls for read misses. More formally,
the write buffer will not fill up if rl

r

> wl

w

, wherer andw are
the number of read and write misses with corresponding latencies
of l

r

andl
w

, respectively.4 Most applications, including the ones
studied in this paper, have more read misses than write misses,
especially because data is usually read before it is written. In
addition, most architectures have comparable latencies for reads
and writes. Therefore, PC is expected to perform comparably to
RC over a wide range of architectures and applications.

This study has been primarily concerned about the gains that
arise from relaxing consistency constraints at the hardware level.
Consistency constraints can also affect performance at the soft-
ware level, mainly through enabling compiler optimization for
shared variables. For example, common compiler optimizations
such as register allocation and common subexpression elimina-
tion involve changing the order of accesses in a program. More
aggressive compiler optimizations like blocking of loops and
register allocation of arrays also result in reordering of accesses.
Under SC and PC, these optimizations can not be legally per-
formed by the compiler. This can significantly degrade the per-
formance of the system. In contrast, RC and WC provide consid-
erable flexibility to the compiler for optimizing shared accesses
and are thus desirable models. In fact, the gains achieved by do-
ing such software optimizations can exceed the gains achievable
in the hardware.

4This is a conservative condition since the time the processor is busy
executing instruction or waiting for acquire synchronizations also contributes
to the amount of time the write buffer has to retire writes.

Page 11

Another issue concerning consistency models is the complex-
ity of the model as presented to the programmer. There have
been several efforts in specifying programming restrictions that
result in the relaxed models being equivalent to sequential con-
sistency as far as correctness is concerned [2, 6]. In practice,
we have found that satisfying such restrictions is not a problem.
Most user-level applications developed in our group already sat-
isfy the restrictions with no change to the programs. Porting the
Silicon Graphics IRIX operating system to DASH did not require
more than a handful of simple changes either. Still more research
is needed, however, to help the programmer in identifying and
avoiding unwanted race conditions.

The simulation results presented in this paper are based on two
major assumptions. Both assumptions limit the gain achievable
from relaxing the consistency model. The first assumption is
that the processors block on a read access. While the conditions
for WC and RC allow multiple read accesses to be overlapped
and pipelined, an implementation with blocking reads does not
allow the latency of reads to be hidden in this manner. The
design of processors that allow multiple outstanding reads and
out-of-order execution of instructions and their effectiveness in
hiding the latency of reads is a current topic of research.

The results in this paper are also dependent on the assump-
tion that an invalidation-based coherence scheme is used. The
tradeoffs for an update-based coherence scheme can be quite dif-
ferent. Although most programs exhibit a larger number of read
misses than write misses in an invalidation-based scheme, it is
likely that the number of read misses will decrease and write
updates will substantially increase in an update-based scheme.
This may in turn make the pipelining of writes more important
to prevent the write buffer from filling up. To determine the
tradeoffs described above will require a more in-depth study of
such update-based schemes.

8 Related Work

In this section, we discuss some alternative implementations that
have been proposed for sequential consistency and weak consis-
tency and briefly describe previous evaluation efforts.

Adve and Hill [1] have proposed a very aggressive imple-
mentation for sequential consistency. Their scheme requires an
invalidation-based cache coherence protocol. At points where
our SC implementation stalls for the full latency of pending
writes, their implementation stalls only until ownership is gained.
To make the implementation satisfy sequential consistency, the
new value written is not made visible to other processors until all
previous writes by this processor have completed. Simulations
show, however, that the latency of obtaining ownership is only
slightly smaller than the latency for the write to complete. This
is because the number of invalidations caused by a write is usu-
ally small [20]. Since the visibility-control mechanism reduces
the stall time for SC only slightly, we still expect PC to perform
significantly better than SC.

Adve and Hill [2] have also proposed an implementation for
weak ordering that is less strict than WC. The constraints in their
implementation are quite similar to the constraints imposed by
RC. Therefore, the performance of their model is expected to be
comparable to RC in practice, and thus not significantly better
than PC.

Scheurich and Dubois [5, 17] provide simple analytical mod-
els to estimate the benefits arising from weak consistency and
lockup-free caches. The gains predicted by these models are
large, sometimes close to an order of magnitude gain in perfor-

mance. We can not compare our results to this work, however,
since their models are based on non-blocking reads, while our
simulation results assume the processor stalls on reads.

Torrellas and Hennessy [19] present a more detailed analytical
model of a multiprocessor architecture and estimate the effects
of relaxing the consistency model on performance. A maximum
gain of 20% in performance is predicted for using weak con-
sistency over sequential consistency. This prediction is lower
than the results in our study due to mainly two reasons: (i) the
latencies assumed in [19] are lower than the ones in our simu-
lated architecture; and (ii) the bus bandwidth assumed in their
architecture became a limiting factor for cases with high sharing,
where the weaker models could gain more otherwise.

9 Concluding Remarks

To enable multiprocessors to hide and reduce memory latency, a
number of memory consistency models have been proposed in
the literature. However, so far, no detailed performance results
had been reported. In this paper, we have presented a simulation-
based study that characterizes the performance of these consis-
tency models.

Our results showed that, for architectures with blocking reads,
the sequentially consistent models (BASE and SC) have signifi-
cantly worse performance than the less strict models (PC, WC,
and RC). For the three benchmark applications studied, the less
strict models were shown to improve the processor utilization
by as much as 10-40% over the BASE model. The gains are
expected to increase with larger memory latencies that will be
seen in future machines.

The paper further showed that most of the benefits achieved by
the less strict models were due to buffering of writes and allow-
ing reads to bypass pending writes. Lockup-free caches were
shown to be essential for achieving the full potential of these
models. The ability to pipeline writes was not as critical to per-
formance, especially when reasonably deep write buffers were
used. The surprising consequence was that processor consis-
tency performed almost as well as the release consistency model.
This was shown to be true under several architectural variations.
Since processor consistency is simpler to implement in hard-
ware, the results suggest that choosing processor consistency as
the hardware model may be the most reasonable approach given
current processors.

10 Acknowledgments

We thank Hank Levy and the reviewers for helpful comments.
The following people also provided useful feedback on an ear-
lier version of the paper: Sarita Adve, Phillip Gibbons, James
Laudon, Christoph Scheurich, Per Stenstrom, Josep Torrellas,
and Shigeru Urushibara. We wish to thank Todd Mowry for
providing the Dixie simulator and for helping with the changes
we needed to make to Dixie. The simulation results would not
have been possible without his generous help. We thank the ap-
plication writers for their applications: Larry Soule for PTHOR,
Jeff McDonald for MP3D, Todd Mowry for MP3D with ex-
plicit prefetching, and Ed Rothberg for LU. We also thank Rohit
Chandra for helpful discussions. This research was supported by
DARPA contract N00014-87-K-0828. Kourosh Gharachorloo is
partly supported by Texas Instruments and Anoop Gupta is partly
supported by a NSF Presidential Young Investigator Award.

Page 12

References

[1] Sarita Adve and Mark Hill. Implementing sequential con-
sistency in cache-based systems. InProceedings of the 1990
International Conference on Parallel Processing, pages I:
47–50, August 1990.

[2] Sarita Adve and Mark Hill. Weak ordering - A new def-
inition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2–14, May
1990.

[3] Anant Agarwal, Beng-Hong Lim, David Kranz, and John
Kubiatowicz. April: A processor architecture for multipro-
cessing. InProceedings of the 17th Annual International
Symposium on Computer Architecture, pages 104–114, May
1990.

[4] Michel Dubois and Christoph Scheurich. Memory access
dependencies in shared-memory multiprocessors.IEEE
Transactions on Software Engineering, 16(6):660–673,
June 1990.

[5] Michel Dubois, Christoph Scheurich, and Fayé Briggs.
Memory access buffering in multiprocessors. InProceed-
ings of the 13th Annual International Symposium on Com-
puter Architecture, pages 434–442, June 1986.

[6] Kourosh Gharachorloo, Dan Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy. Mem-
ory consistency and event ordering in scalable shared-
memory multiprocessors. InProceedings of the 17th An-
nual International Symposium on Computer Architecture,
pages 15–26, May 1990.

[7] Stephen R. Goldschmidt and Helen Davis. Tango intro-
duction and tutorial. Technical Report CSL-TR-90-410,
Stanford University, 1990.

[8] James R. Goodman. Cache consistency and sequential con-
sistency. Technical Report no. 61, SCI Committee, March
1989.

[9] D. Kroft. Lockup-free instruction fetch/prefetch cache or-
ganization. InProceedings of the 8th Annual International
Symposium on Computer Architecture, 1981.

[10] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs.IEEE Trans-
actions on Computers, C-28(9):241–248, September 1979.

[11] Dan Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The directory-based
cache coherence protocol for the DASH multiprocessor. In
Proceedings of the 17th Annual International Symposium
on Computer Architecture, May 1990.

[12] Ewing Lusk, Ross Overbeek, et al.Portable Programs
for Parallel Processors. Holt, Rinehart and Winston, Inc.,
1987.

[13] Jeffrey D. McDonald and Donald Baganoff. Vectoriza-
tion of a particle simulation method for hypersonic rari-
fied flow. In AIAA Thermodynamics, Plasmadynamics and
Lasers Conference, June 1988.

[14] Todd Mowry and Anoop Gupta. Tolerating latency through
software-controlled prefetching in scalable shared-memory
multiprocessors.Journal of Parallel and Distributed Com-
puting, to appear in June 1991.

[15] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey,
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A.
Norton, and J. Weiss. The IBM research parallel processor
prototype (RP3): Introduction and architecture. InPro-
ceedings of the 1985 International Conference on Parallel
Processing, pages 764–771, 1985.

[16] Christoph Scheurich.Access Ordering and Coherence in
Shared Memory Multiprocessors. PhD thesis, University of
Southern California, May 1989.

[17] Christoph Scheurich and Michel Dubois. Concurrent miss
resolution in multiprocessor caches. InProceedings of
the 1988 International Conference on Parallel Processing,
pages I: 118–125, August 1988.

[18] Larry Soule and Anoop Gupta. Parallel distributed-time
logic simulation. IEEE Design and Test of Computers,
6(6):32–48, December 1989.

[19] Josep Torrellas and John Hennessy. Estimating the per-
formance advantages of relaxing consistency in a shared-
memory multiprocessor. InProceedings of the 1990 Inter-
national Conference on Parallel Processing, pages I: 26–
33, August 1990.

[20] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache
invalidation patterns in multiprocessors. InProceedings of
the Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 243–256, April 1989.

Page 13

