Leopard: Lightweight Edge-Oriented Partitioning and Replication for Dynamic Graphs

presented by Qixuan Li
What is Graph Partitioning?

Partition 1

Partition 2
Why Graph Partitioning?

Most famous social network sites worldwide as of April 2017, ranked by number of active users (in millions)

- Facebook: 1,968
- WhatsApp: 1,200
- YouTube*: 1,000
- Facebook Messenger: 1,000
- WeChat: 889
- QQ: 868
- Instagram: 600
- QZone: 595
- Tumblr*: 550
- Twitter: 319
Social Network
Why Graph Partitioning?

• Large graphs are becoming increasingly prevalent

• Large graph datasets are too large to manage on a single machine
Ideal Graph Partitioning Algorithm

• As few cut as possible
• As balance as possible

Conflict!
Dynamic Graph Partitioning

- Graph is always changing
- NP-hard
Dynamic Graph Partitioning Example

Is A still in Partition 1?
Leopard

• Algorithm Overview
 - Vertex Assignment
 - Vertex Reassignment
 - Computation Skipping

• Integration with Replication
Algorithm Overview

• Incrementally maintain a quality graph partitioning, dynamically adjusting as new vertices and edge are added to the graph

• Integrates consideration of replication with partitioning
Objective Function

FENNEL Scoring Function:

\[
\arg\max_{1 \leq i \leq k} \left\{ \left| N(v) \cap P_i \right| - \alpha \frac{\gamma}{2} \left(|P_i| \right)^{\gamma^{-1}} \right\}
\]

N(v): the set of neighbors of vertex v
Pi: partition i
k: # partitions
Leopard

• Algorithm Overview
 - Vertex Assignment
 - Vertex Reassignment
 - Computation Skipping

• Integration with Replication
Vertex Assignment

• Given a vertex u:

 compute the best partition for u using the objective function and put u into that partition
Observation: Vertex Assignment

• Graph is changing

• Need to consider adds/deletes
Leopard

• Algorithm Overview
 - Vertex Assignment
 - Vertex Reassignment
 - Computation Skipping

• Integration with Replication
Vertex Reassignment v1

Slow!

• When add/delete an edge \((u, v)\)

 Go through every vertex and examine for reassignment
Observation: Vertex Reassignment v1

• Most vertices are minimally affected
• u may move to v’s partition or vice versa
• ripple effect
Vertex Reassignment v2

• When an edge \((u, v)\) is added/deleted:

 u and v are chosen as the initial candidates for examination of potential reassignment

 Still too slow!

 if either one of them is reassigned, add the immediate neighbors of the moved vertex to the candidate set

 check for reassignment of every vertex in the candidate set
Observation: Vertex Reassignment v2

• As a vertex’s number of neighbors increases, the influence of a new neighbor decreases

• Accumulate the changes until they exceed the threshold
Leopard

• Algorithm Overview

 Vertex Assignment

 Vertex Reassignment

 Computation Skipping

• Integration with Replication
Computation Skipping

threshold = 0.5
ratio = # accumulated changes / # neighbors
(1) 1 edge is added to A, 1 / 3 = 0.33 < 0.5. Don’t recompute
(2) When 1 more new edge is added for A: 2 / 4 = 0.5 = 0.5. Recompute the partition for A.
(3) Reset # accumulated changes to 0.
Vertex Reassignment (Final)

• When an edge \((u, v)\) is added/deleted:

 - \(u\) and \(v\) are chosen as the initial candidates for examination of potential reassignment

 - if either one of them is reassigned, add the immediate neighbors of the moved vertex to the candidate set

 - examine vertex in the candidate set that has accumulated changes exceeding the threshold
Vertex Reassignment (Final)
Vertex Reassignment (Final)

Candidate Set: {A, B}
Vertex Reassignment (Final)

neighbors: 1
vertices: 5
score: $1 \times (1 - \frac{5}{6}) = 0.17$

neighbors: 3
vertices: 5
score: $3 \times (1 - \frac{3}{6}) = 1.5$

Goals: (1) few cuts and (2) balanced

Objective Function: $\# \text{ neighbors} \times (1 - \frac{\# \text{ vertices}}{\text{capacity}})$

Partition Capacity: 6
Vertex Reassignment (Final)

- **neighbors**: 1
- **vertices**: 4
- **score**: \(1 \times (1 - \frac{4}{6}) = 0.33\)

- **neighbors**: 2
- **vertices**: 4
- **score**: \(2 \times (1 - \frac{4}{6}) = 0.66\)

Goals: (1) few cuts and (2) balanced

Objective Function: \# neighbors \(\times (1 - \#\text{vertices/capacity})\)

Partition Capacity: 6
Vertex Reassignment (Final)
Vertex Reassignment (Final)

Candidate Set: \{C, D\}
Leopard

- Algorithm Overview
 - Vertex Assignment
 - Vertex Reassignment
 - Computation Skipping

- Integration with Replication
Replication

• Fault tolerance

• Access locality
Minimum-Average Replication

• Take two parameters: minimum and average number of copies

• Minimum: fault tolerance

• Average: additional access locality

• Decide the number and location of copies
Minimum-Average Replication

Input Graph

(a) Partition 1
(b) Partition 2

(c) Partition 3
(d) Partition 4

# copies	vertices
2 | A,C,D,E,H,J,K,L
3 | F,I
4 | B,G

example taken from the paper
Minimum-Average Replication

Min: 2
avg: 2.5

only fault tolerance

<table>
<thead>
<tr>
<th># copies</th>
<th>vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A, C, D, E, H, J, K, L</td>
</tr>
<tr>
<td>3</td>
<td>F, I</td>
</tr>
<tr>
<td>4</td>
<td>B, G</td>
</tr>
</tbody>
</table>
Recall: Objective Function

FENNEL Scoring Function:

\[
\arg\max_{1 \leq i \leq k} \left\{ |N(v) \cap P_i| - \alpha \frac{\gamma}{2} (|P_i|)^{\gamma-1} \right\}
\]
Modified Vertex Assignment

• def: primary copy of \(v = p(v) \)

 secondary copy of \(v = s(v) \)

• \(p(v) \): \(u \) is \(v \)'s neighbor; \(s(u) \) or \(p(u) \) is in the partition

• \(s(v) \): \(u \) is \(v \)'s neighbor; \(p(u) \) is in the partition

• Assign two scores for each partition, one for the \(p(v) \) and one for \(s(v) \)
Minimum-Average Replication

Partition 1

primary: 0.15
secondary: 0.1

Partition 2

primary: 0.25
secondary: 0.2

Partition 3

primary: 0.35
secondary: 0.3

Partition 4

primary: 0.45
secondary: 0.4

Partition 5

primary: 0.55
secondary: X

min: 2
avg: 3
Minimum-Average Replication

<table>
<thead>
<tr>
<th>Partition 1</th>
<th>Partition 2</th>
<th>Partition 3</th>
<th>Partition 4</th>
<th>Partition 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary:</td>
<td>0.15</td>
<td>0.25</td>
<td>0.35</td>
<td>0.45</td>
</tr>
<tr>
<td>secondary:</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

min: 2
avg: 3
Minimum-Average Replication

keep the last n sorted computed scores

cutoff: top $\frac{\text{avg-1}}{k-1} = 2 / 4 = 50\%$ of scores

k: # partitions

min: 2
avg: 3
Minimum-Average Replication

keep the last n sorted computed scores

cutoff: 50th highest score

min: 2
avg: 3
Minimum-Average Replication

keep the last n sorted computed scores

High

0.9 0.87 ... 0.4 ... 0.3 ... 0.22 0.2 ... 0.11 0.1

50th 51st

Low

cutoff: 50th highest score

min: 2
avg: 3
Minimum-Average Replication

keep the last n sorted computed scores

cutoff: 50th highest score

min: 2
avg: 3
Evaluation

• Machine: 4th Generation Intel Core i5 and 16 GB memory

• Comparison Points:
 - Leopard (FENNEL as objective function)
 - One-pass FENNEL (no vertex reassignment)
 - METIS (static graphs)
 - ParMetis (repartitioning for dynamic graphs)
 - Hash Partitioning
Evaluation

• Partition graphs into 40 partitions
• Parameters: $\gamma = 1.5$ and $\alpha = \frac{\sqrt{k|E|}}{|V|^{1.5}}$
• cut ratio: # edge cuts / # edges
Dataset

| Graph | |V| | E | Density | Clustering Coef. | Diameter | Type |
|-------------------------------|-----------------|-------|--------|-------------|--------------|---------|--------|
| Wiki-Vote (WV) | 7,115 | 100,762 | 3.9 * 10^{-3} | 0.1409 | 3.8 | Social |
| Astroph | 18,771 | 198,050 | 1.1 * 10^{-3} | 0.6306 | 5.0 | Citation |
| Enron | 36,692 | 183,831 | 2.7 * 10^{-4} | 0.4970 | 4.8 | Email |
| Slashdot (SD) | 77,360 | 469,180 | 1.6 * 10^{-4} | 0.0555 | 4.7 | Social |
| NotreDame (ND) | 325,729 | 1,090,108 | 2.1 * 10^{-5} | 0.2346 | 9.4 | Web |
| Stanford | 281,903 | 1,992,636 | 5.0 * 10^{-5} | 0.5976 | 9.7 | Web |
| BerkStan (BS) | 685,230 | 6,649,470 | 2.8 * 10^{-5} | 0.5967 | 9.9 | Web |
| Google | 875,713 | 4,322,051 | 1.1 * 10^{-5} | 0.5143 | 8.1 | Web |
| LiveJournal (LJ) | 4,846,609 | 42,851,237 | 3.7 * 10^{-6} | 0.2742 | 6.5 | Social |
| Orkut | 3,072,441 | 117,185,083 | 2.5 * 10^{-5} | 0.1666 | 4.8 | Social |
| BaraBasi-Albert graph (BA) | 15,000,000 | 1,800,000,000 | 1.6 * 10^{-5} | 0.2195 | 4.6 | Synthetic |
| Twitter | 41,652,230 | 1,468,365,182 | 1.7 * 10^{-6} | 0.1734 | 4.8 | Social |
| Friendster (FS) | 65,608,366 | 1,806,067,135 | 8.4 * 10^{-7} | 0.1623 | 5.8 | Social |

Figure 7: Statistics of the graphs used in the experiments. Diameter is reported at 90th-percentile to eliminate outliers.
Cut Ratio

![Graph showing edge cut ratio for various input graphs]
Cut Ratio

METIS: upper bound
Cut Ratio

Web graphs
Computation Skipping
Computation Skipping
Computation Skipping
Computation Skipping

always examine

never examine
Computation Skipping

Sparse

Dense
Summary

• core idea: vertex assigned to partition with most of its neighbors, large partition should be penalized to prevent it from becoming too large

• focuses on read-only workload

• first to integrate replication with partitioning

• perform poorly on web graph
Discussion

• How the presented approach is different from heuristic method and how well it performs in maintaining accuracy?

• The experiment and research are mainly for theoretical analysis like edge-cut ratio. Then how about the running time?

• How the solution presented (map vertices to machines in a distributed hash table) solves the fundamental problem with hash partitioning stated in the introduction?

• How are frequent updates to the skipped computation counter propagated in the presence of replication?