CS 525
Advanced Distributed Systems
Spring 2017

Indranil Gupta (Indy)
Lecture 8
Paxos
February 9, 2017
Consensus Problem

• Every process contributes a value
• Each process decides a value
 – Decision once made can’t be changed
• Goal is to have all processes decide same value
• If everyone votes V, decision is V

• Consensus impossible to solve in asynchronous systems (FLP result)
• But important since it maps to many important distributed computing problems
• Um, can’t we just solve consensus?
Yes we can!

• Paxos algorithm
 – Most popular “consensus-solving” algorithm
 – Does not solve consensus problem (which would be impossible, because we already proved that)
 – But provides safety and eventual liveness
 – A lot of systems use it
 • Zookeeper (Yahoo!), Google Chubby, and many other companies

• Paxos invented by? (take a guess)
Yes we can!

• Paxos invented by Leslie Lamport

• Paxos provides safety and eventual liveness
 – Safety: Consensus is not violated
 – Eventual Liveness: If things go well sometime in the future (messages, failures, etc.), there is a good chance consensus will be reached. But there is no guarantee.
Political Science 101, i.e., Paxos Groked

- Paxos has rounds; each round has a unique ballot id
- Rounds are asynchronous
 - Time synchronization not required
 - If you’re in round \(j \) and hear a message from round \(j+1 \), abort everything and move over to round \(j+1 \)
 - Use timeouts; may be pessimistic
- Each round itself broken into phases (which are also asynchronous)
 - Phase 1: A leader is elected (Election)
 - Phase 2: Leader proposes a value, processes ack (Bill)
 - Phase 3: Leader multicasts final value (Law)

Slide ideas borrow from Jeff Chase’s material (Duke U.)
Phase 1 – Election

- Potential leader chooses a unique ballot id, higher than seen anything so far
- Sends to all processes
- Processes wait, respond once to highest ballot id
 - If potential leader sees a higher ballot id, it can’t be a leader
 - Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
 - Processes also log received ballot ID on disk
- If a process has in a previous round decided on a value v', it includes value v' in its response
- If majority (i.e., quorum) respond OK then you are the leader
 - If no one has majority, start new round
- (If things go right) A round cannot have two leaders (why?)

Please elect me!

OK!
Phase 2 – Proposal (Bill)

- Leader sends proposed value v to all
 - use $v = v'$ if some process already decided in a previous round and sent you its decided value v'

- Recipient logs on disk; responds OK

![Diagram]

Please elect me!

OK!

Value v ok?

OK!
Phase 3 – Decision (Law)

- If leader hears a majority of OKs, it lets everyone know of the decision
- Recipients receive decision, log it on disk

Please elect me!

Value v ok?

OK!

v!
Which is the point of no-return?

- That is, when is consensus reached in the system
Which is the point of no-return?

- If/when a majority of processes hear proposed value and accept it (i.e., are about to/have respond(ed) with an OK!)
- Processes may not know it yet, but a decision has been made for the group
 - Even leader does not know it yet
- What if leader fails after that?
 - Keep having rounds until some round completes
Safety

• If some round has a majority (i.e., quorum) hearing proposed value v' and accepting it, then subsequently at each round either: 1) the round chooses v' as decision or 2) the round fails

• Proof:
 – Potential leader waits for majority of OKs in Phase 1
 – At least one will contain v' (because two majorities or quorums always intersect)
 – It will choose to send out v' in Phase 2

• Success requires a majority, and any two majority sets intersect
What could go wrong?

• Process fails
 – Majority does not include it
 – When process restarts, it uses log to retrieve a past decision (if any) and past-seen ballot ids. Tries to know of past decisions.

• Leader fails
 – Start another round

• Messages dropped
 – If too flaky, just start another round

• Note that anyone can start a round any time

• Protocol may never end – tough luck, buddy!
 – Impossibility result not violated
 – If things go well sometime in the future, consensus reached

Please elect me!

OK!

Value v ok?

OK!

v!
What could go wrong?

• A lot more!

• This is a highly simplified view of Paxos.