Starfish: A Self-tuning System for Big Data Analytics

Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, Shivnath Babu

Department of Computer Science
Duke University

Presented by Nirupam Roy
The Growth of Data

Changing face of data...

Every 60 seconds
- 98,000+ tweets
- 695,000 status updates
- 11 million instant messages
- 698,445 Google searches
- 168 million+ emails sent
- 1,820TB of data created
- 217 new mobile web users

Yottabytes
MAD: Features of Ideal Analytics System

Magnetism
-- accept all data

Agility
-- adapt with data,
 real-time processing

Depth
-- allow complex analysis
Hadoop is MAD

Magnetism
-- accept all data

Agility
-- adapt with data, real-time processing

Depth
-- allow complex analysis

- Blindly loads data into HDFS.
- Fine-grained scheduler
- End-to-end data pipeline
- Dynamic node addition/dropping
- Well integrated with programming languages
Tuning for Good Performance: Challenges

- Multiple dimensions of performance
 -- time, cost, scalability ...

- Multiple levels of abstraction
 -- job-level, workflow-level, workload-level ...

- Tons of Parameters
 -- more than 190 parameters in Hadoop.
Thumb rule

- \(\text{mapred.reduce.tasks} = 0.9 \times \text{number_of_reduce_slots} \)
- \(\text{io.sort.record.percent} = \frac{16}{(16 + \text{average_record_size})} \)
Thumb rule

1. `mapred.reduce.tasks = 0.9 * number_of_reduce_slots`
2. `io.sort.record.percent = 16 / (16 + average_record_size)`
Starfish: A Self-tuning System

- Builds on Hadoop
- Tunes to ‘good’ performance automatically
Starfish Architecture

Workload-level tuning
- Workload Optimizer
- Elastisizer

Workflow-level tuning
- Workflow-aware Optimizer

Job-level tuning
- Just-in-Time Optimizer
- Profiler
- Sampler

Data Manager
- Metadata Mgr.
- Intermediate Data Mgr.
- Data Layout & Storage Mgr.
The “What-if” Engine

Model + simulation based prediction algo.

Learning from previous job profiles

Analytical models to estimate dataflow

Profile of a job (P) + New parameter set (S)

Simulating the execution of MR workload

Predicted performance

[Ref:] A What-if Engine for Cost-based MapReduce Optimization. H. Herodotou et.al.
The “What-if” Engine

Ground truth

Estimated by the What-if engine
Starfish Architecture: Job Level

- Workload-level tuning
 - Workload Optimizer
 - Elastisizer

- Workflow-level tuning
 - Workflow-aware Optimizer

- Job-level tuning
 - Just-in-Time Optimizer
 - Profiler
 - Sampler

- Data Manager
 - Metadata Mgr.
 - Intermediate Data Mgr.
 - Data Layout & Storage Mgr.

- What-if Engine
Starfish Architecture: Job Level

Just-in-time optimizer
- Searches the parameter space

Profiler
- Collects info. on MapReduce job execution through dynamic instrumentation
- Reports timings, data size, and resource utilization

Sampler
- Generates profile statistics from training benchmark jobs
Starfish Architecture: Workflow Level

- Workload-level tuning
 - Workload Optimizer
 - Elastisizer

- Workflow-level tuning
 - Workflow-aware Optimizer

- Job-level tuning
 - Just-in-Time Optimizer
 - Profiler
 - Sampler

- Data Manager
 - Metadata Mgr.
 - Intermediate Data Mgr.
 - Data Layout & Storage Mgr.

- What-if Engine
Starfish Architecture: Workflow Level

Scheduler to balanced distribution of data
 -- deals with skewed data, add/drop of nodes, tradeoff between balanced data v/s data-locality

Block placement policy for data collocation
 -- Local-write v/s round-robin
Starfish Architecture: Workflow Level

Producer → Task → File 1 → File 2 → File 3 → Wasted production → Job C1 → Job C2 → Consumer

Wasted production
Starfish Architecture: Workflow Level

File level parallelism

Block level parallelism

File level parallelism
Starfish Architecture: Workflow Level

Workflow Aware Optimizer
Select best data layout and job parameters

What-if simulation
- MR job execution
- Task scheduling
- Block placement

Compare cost & benefits

Running time?
Data layout?
Starfish Architecture: Workload Level
Starfish Architecture: Workload Level

Workload Optimizer

- Jumbo operator
- Cost based estimation for best optimization

Elastisizer

- Determine best cluster and Hadoop configurations
Starfish: Summary

- Optimizes on different granularities
 -- Workload, workflow, job (procedural & declarative)

- Considers different decision points
 -- Provisioning, optimization, Scheduling, Data layout
Starfish: Piazza Discussion

Top criticisms (till 1:30pm, 17 reviews):

1) Limited evaluation: 10
2) Not explained well: 7
3) Profiler overhead/better search algo: 5

* What is the effect of wrong prediction?
* What-if engine requires prior knowledge.
Thank you.

http://www.cs.duke.edu/starfish/

Photo courtesy: Starfish group, Duke University
Going MAD with Big Data

Magnetic system

Agile system and Analytics

Deep Analytics

Data Life Cycle Awareness

Elasticity

Robustness
Starfish’s What-if Engine can answer any what-if question of the following general form:1

Given the profile of a job \(j = \langle p, d_1, r_1, c_1 \rangle \) that runs a MapReduce program \(p \) over input data \(d_1 \) and cluster resources \(r_1 \) using configuration \(c_1 \), what will the performance of program \(p \) be if \(p \) is run over input data \(d_2 \) and cluster resources \(r_2 \) using configuration \(c_2 \)? That is, how will job \(j' = \langle p, d_2, r_2, c_2 \rangle \) perform?
Algorithm for predicting MapReduce workflow performance

Input: Profile of jobs in workflow, Cluster resources, Base dataset properties, Configuration settings

Output: Prediction for the MapReduce workflow performance

For each (job profile in workflow in topological sort order) {
 Estimate the virtual job profile for the hypothetical job (Sections 3.1, 3.2, and 3.3);
 Simulate the job execution on the cluster resources (Section 3.4);
 Estimate the data properties of the hypothetical derived dataset(s) and the overall job performance;
}

Figure 1: Overall process used by the What-if Engine to predict the performance of a MapReduce workflow.