Scaling Distributed Machine Learning with the Parameter Server

Based on the paper and presentation:
Scaling Distributed Machine Learning with the Parameter Server – Google, Baidu, Carnegie Mellon University

Included in the proceedings at OSDI 14

Presentation by: Sanchit Gupta
Machine learning is concerned with systems that can learn from data
Machine learning is concerned with systems that can learn from data.
Machine learning is concerned with systems that can learn from data.

![Graph showing Ad click prediction and training data size (TB) over years from 2010 to 2014 with annual revenue (Billion $).]
Machine learning is concerned with systems that can learn from data.

We will report results using 1,000 machines!
Machine learning is concerned with systems that can learn from data.

Data is Large and Increasing!

[Diagram showing annual revenue (Billion $) and training data size (TB) from 2010 to 2014]
Overview of machine learning

raw data → training data → machine learning system → model (key,value) pairs
Overview of machine learning

raw data \rightarrow training data \rightarrow machine learning system \rightarrow model (key,value) pairs

Scale of Industry problems
- 100 billion examples
- 10 billion features
- 1T – 1P training data
- 100 – 1000 machines
Overview of machine learning

raw data → training data → machine learning system → model (key,value) pairs

Scale of Industry problems:
- 100 billion examples
- 10 billion features
- 1T – 1P training data
- 100 – 1000 machines

- scale to industry problems
- efficient communication
- fault tolerance
- easy to use
Characteristics & Challenges of ML jobs

- Training Data is Large – 1TB to 1PB

- Complex Models with Billions and Trillions of Parameters

- Parameters are shared globally among worker nodes:
 - Accessing them incurs large Network costs
 - Sequential ML jobs require barriers and hurt performance by blocking
 - At scale, Fault Tolerance is required as these jobs run in a cloud environment where machines are unreliable and jobs can be preempted
Key Goals and Features of Design

• **Efficient Communication**: asynchronous communication model (does not block computation)

• **Flexible Consistency Models**: Algorithm designer can balance algorithmic convergence and system efficiency

• **Elastic Scalability**: New nodes can be added without restarting framework

• **Fault Tolerance and Durability**: Recovery from and repair in 1 sec.

• **Ease of Use**: easy for users to write programs
Architecture & Design Details
Architecture: Data and Model

- Model
- Training Data
- Server Manager
- Server Machines
- Task Scheduler
- Worker Machines
- Push
- Pull
- Work
- Resource Manager
Example: Distributed gradient Descent

- Workers get the Assigned training data
- Workers **Pull** the Working set of Model
- Iterate until Stop:
 - Workers **Compute** Gradients
 - Workers **Push** Gradients
 - Servers **Aggregate** into current model
 - Workers **Pull** updated model
Architecture: Parameter Key-Value

• Model Parameters are represented as Key – Value pairs

• Parameter Server approach models the Key-Value pairs as sparse Linear Algebra Objects.

• **Batch** several key-value pairs required to compute a vector/matrix instead of sending them one by one

• **Easy to Program!** – Lets us treat the parameters as key-values while endowing them with matrix semantics
(Key, value) vectors for the shared parameters

math sparse vector

\[
\begin{array}{ccc}
 i_1 & i_2 & i_3 \\
\end{array}
\]

(key, value) store

\[
(i_1, \text{blue}) \quad (i_2, \text{green}) \quad (i_3, \text{orange})
\]
(Key, value) vectors for the shared parameters

- Good for programmers: Matches mental model
- Good for system: Expose optimizations based upon structure of data
(Key, value) vectors for the shared parameters

math sparse vector (key, value) store

\[\begin{array}{ccc}
\text{i}_1 & \text{i}_2 & \text{i}_3 \\
\end{array} \quad \rightarrow \quad \begin{array}{ccc}
(\text{i}_1, \square) & (\text{i}_2, \square) & (\text{i}_3, \square) \\
\end{array} \]

- Good for programmers: Matches mental model
- Good for system: Expose optimizations based upon structure of data

Example: computing gradient

\[
\text{gradient} = \text{data}^T \times (- \text{label} \times 1 / (1 + \exp (\text{label} \times \text{data} \times \text{model}))
\]
Architecture: Range Push and Pull

- Data is sent between Workers and Servers using *PUSH* and *PUSH* operations.

- Parameter Server optimizes updates *communication* by using RANGE based *PUSH* and *PULL*.

- Example: Let \(w \) denote parameters of some model
 - \(w.push(Range, dest) \)
 - \(w.pull(Range, dest) \)
 - These methods will send/receive all existing entries of \(w \) with *keys* in \(Range \)
Architecture: Asynchronous tasks and Dependency

• Challenges for Data Synchronization:

 • There is a MASSIVE communication traffic due to frequent access of Shared Model

 • Global barriers between iterations – leads to:
 • idle workers waiting for other computation to finish
 • High total finish time
Task

- a push / pull / user defined function (an iteration)
Task

- a push / pull / user defined function (an iteration)
- “execute-after-finished” dependency
Task

- a push / pull / user defined function (an iteration)
- “execute-after-finished” dependency
Task

- a push / pull / user defined function (an iteration)
- “execute-after-finished” dependency

- executed asynchronously
Task

- a push / pull / user defined function (an iteration)
- “execute-after-finished” dependency

- executed asynchronously
Architecture: Flexible Consistency

• Can change the consistency model for the system, as per the requirements of the job.
• Up to the algorithm designer to choose the flexible consistency model.
• Trade-off between \textit{Algorithm Efficiency} and \textit{System} Performance.
Results for bounded delay
Results for bounded delay

Ad click prediction

<table>
<thead>
<tr>
<th>Bounded delay (hour)</th>
<th>computing</th>
<th>waiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results for bounded delay

Ad click prediction

sequential

computing
waiting

time (hour)

Bounded delay

0 1 2 4 8 16
Results for bounded delay

Ad click prediction

Time (hour)

Sequential

Bounded delay

Computing
Waiting
Results for bounded delay

Ad click prediction

Sequential

Computing
Waiting

Best trade-off

Time (hour)

Bounded delay

0 1 2 4 8 16
Architecture: User Defined Filters

• Selectively Synchronize (key, value) pairs.

• Filters can be placed at either or both the Server machines and Worker machines.

• Allows for fine-grained consistency control within a task

• Example: *Significantly modified filter*: Only pushes entries that have changed for more than an amount.
Implementation: Vector Clocks & Messaging

• Vector Clocks are attached for each (Key, value) pairs for several purposes:
 • Tracking Aggregation Status
 • Rejecting doubly sent data
 • Recovery from Failure

• As many (key, value) pairs get updated at the same time during one iteration, they can share the same clock stamps. This reduces the space requirements.

• Messages are sent in Ranges for efficient lookup and transfers.

• Messages are compressed using Google’s Snappy compression library.
Implementation: Consistent Hashing & Replication

• The parameter server partitions the keys onto the Servers using *Ranged Partitioning*.

• The *Servers* are themselves hashed to a virtual ring similar to Chord.

• Server nodes store a replica of (Key, value) pairs in k nodes counter clockwise to it.
Machine learning job logs in a three-month period:
Machine learning job logs in a three-month period:

- Failure rate
 - 26
 - 19.5
 - 13
 - 6.5
 - 0

machine x time (hour)
Machine learning job logs in a three-month period:

- Failure rate %
 - 0
 - 6.5
 - 13
 - 19.5
 - 26

- #machine x time (hour)
Machine learning job logs in a three-month period:

![Graph showing failure rate % over #machine x time (hour) range from 100 to 10000]
Machine learning job logs in a three-month period:

- Failure rate %
 - 0 to 6.5
 - 6.5 to 13
 - 13 to 26

- #machine x time (hour)
 - 100
 - 1000
 - 10000
Fault tolerance
Fault tolerance

- Model is partitioned by consistent hashing
Fault tolerance

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)
Fault tolerance

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)
Fault tolerance

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)
- Option: Aggregation reduces backup traffic (algo specific)
Fault tolerance

✧ Model is partitioned by consistent hashing
✧ Default replication: Chain replication (consistent, safe)

✧ Option: Aggregation reduces backup traffic (algo specific)
Fault tolerance

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

- Option: Aggregation reduces backup traffic (algo specific)

implemented by efficient vector clock
Evaluation
Evaluation: Sparse Logistic Regression

• One of the most popular large scale Risk Minimization algorithm.

• For example in the case of ads prediction, we want to predict the revenue an ad will generate.

• It can be done by running a logistic regression on the available data for ads which are ‘close to’ the ad we want to post.

• The experiment was run with:
 • 170 billion examples
 • 65 billion unique features
 • 636 TB of data in total
 • 1000 machines: 800 workers & 200 servers
 • Machines: 16 cores, 192 GB DRAM, and 10 Gb Ethernet links

<table>
<thead>
<tr>
<th>System</th>
<th>Method</th>
<th>Consistency</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>System A</td>
<td>L-BFGS</td>
<td>Sequential</td>
<td>10,000</td>
</tr>
<tr>
<td>System B</td>
<td>Block PG</td>
<td>Sequential</td>
<td>30,000</td>
</tr>
<tr>
<td>Parameter</td>
<td>Block PG</td>
<td>Bounded Delay</td>
<td>300</td>
</tr>
<tr>
<td>Server</td>
<td></td>
<td>KKT Filter</td>
<td></td>
</tr>
</tbody>
</table>
Progress

large

error

small

System A

time (hour)

0.1 1 10
Progress

large

error

small

System A

System B

time (hour)
Progress

- Large error
- Small error

Graph showing:
- System A (green)
- System B (blue)
- Parameter Server (red)

Time (hour) range from 0.1 to 10.
Time decomposition

<table>
<thead>
<tr>
<th>Time (hour)</th>
<th>System-A</th>
<th>System-B</th>
<th>Parameter Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

computing
waiting
Time decomposition

- System-A
- System-B
- Parameter Server

- Computing
- Waiting

Time (hour)

- 0
- 1.25
- 2.5
- 3.75
- 5
Time decomposition

![Bar chart showing time decomposition for different systems and the server, with time in hours on the y-axis and system labels on the x-axis. The chart distinguishes between computing and waiting time.](chart.png)
Time decomposition

- System-A: 3.75 hours (computing: 2.5 hours, waiting: 1.25 hours)
- System-B: 1.25 hours (computing: 0.5 hours, waiting: 0.75 hours)
- Parameter Server: 1.25 hours (computing: 0.5 hours, waiting: 0.75 hours)
Summary and Discussion
Summary: Pros

• **Efficient Communication:**
 • Batching (key,value) pairs in Linear Algebra objects
 • Filters to reduce unnecessary communication & message compression
 • Caching keys at worker and server nodes for local access

• **Flexible Consistency Models:**
 • Can choose between Sequential, Eventual, and Bounded delay consistency models
 • Allows for tradeoffs between System Performance and Algorithmic Convergence

• **Fault Tolerance and Durability:**
 • Replication of data in Servers
 • Failed workers can restart at the point of failure by using vector clocks

• **Ease of Use:**
 • Linear Algebra objects allow for intuitive implementation of tasks
Summary: Cons & Further Discussion

• What are System A and System B? No insight into design differences.

• Server Manager Failures and Task Scheduler failures are not discussed.

• No experiments on the other two systems with Bounded delay model. System B’s waiting time may reduce if implemented with a Bounded Delay model.