CS 519: Scientific Visualization

Tensor Visualization

Eric Shaffer

Some slides adapted Alexandru Telea, Data Visualization Principles and Practice
1. What is a tensor?
 - Describe in terms of principal component analysis

2. Basic tensor visualization
 - Component visualization
 - Anisotropy visualization
 - Major eigenvector visualization

3. Application: Fiber tracking
 - Basic fiber tracking
 - Stream tubes
 - Hyperstreamlines
What is a tensor?

Explanation 1: Dimensionality
- scalar: a 0D array of values e.g. 1 value
- vector: a 1D array of values e.g. 3 values
- tensor: a 2D matrix of values e.g. $3 \times 3 = 9$ values

Explanation 2: Analysis
- scalar: magnitude (of some signal at a point in space)
- vector: magnitude and direction (of some signal at some point in space)
- tensor: variation of magnitude (of some signal at some point in space)
What is a tensor?

Explanation 3: As a function

- **scalar:** at \(x \in \mathbb{R}^3 \), measure some value \(s \in \mathbb{R} \)
- **vector:** at \(x \in \mathbb{R}^3 \), measure some magnitude and direction \(v \in \mathbb{R}^3 \)
- **tensor:** at \(x \in \mathbb{R}^3 \) and in a direction \(v \in \mathbb{R}^3 \), measure some magnitude \(s \in \mathbb{R} \)

Fields

So we have different kinds of fields (i.e. *functions* of a variable \(x \in \mathbb{R}^3 \)):

Scalar fields \(s : \mathbb{R}^3 \to \mathbb{R} \)

Vector fields \(v : \mathbb{R}^3 \to \mathbb{R}^3 \)

Tensor fields \(T : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \)
Curvature in 1D

- take a curve \(c \subseteq \mathbb{R}^3 \)
- locally, \(c \) can be described as a function \(y = f(x) \)

\[y = f(x) \]

- curvature of \(f \) \(C(x) = \frac{\partial^2 f}{\partial x^2} \) (2nd derivative of \(f \))

- analytically: \(C(x) = \) how quickly the normal \(n_c \) changes around \(x \)
 (why? Because the tangent to \(c \) is \(\frac{\partial f}{\partial x} \) and its change is \(\frac{\partial^2 f}{\partial x^2} \))
Curvature in 2D

- take a surface $S \subset \mathbb{R}^3$
- at each $x_0 \in S$
 - take a coordinate system xyz with x,y tangent to S and z along n_S
 - locally, S can be described as a function $z = f(x,y)$

How to describe 2D curvature?

- 1D analogy: how quickly the normal n_S changes around x_0
- problem: we have a surface – in which direction to look for change?

We must compute

$$C(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$$
for any direction s.

- slice plane P
- curve C
- surface S
The Curvature Tensor

\[C(x, s) = \frac{\partial^2 f(x)}{\partial s^2} \]

- recall our definition of a tensor \(T : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R} \)? The above is precisely that

Also note that

\[\frac{\partial^2 f}{\partial s^2}(x_0) = s^T H s. \]

where \(H \) is the so-called Hessian of \(f \)

\[
H = \begin{pmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{pmatrix}
\]

In other words, if we have \(H \), we can compute the curvature tensor
- at any point \(x_0 \)
- in any direction \(s \)
The Curvature Tensor

However, there's a problem with the previous definition

- we need to construct local coordinate systems at every point on \(S \)
- not obvious how to do that….

General solution:

Describe \(S \) as an implicit function (i.e. the zero-level isosurface of a function)

\[
S = \left\{ x \in \mathbb{R}^3 \mid f(x) = 0 \right\} \quad \text{for a given } f : \mathbb{R}^3 \to \mathbb{R}
\]

Then, we still have

\[
\frac{\partial^2 f}{\partial s^2}(x_0) = s^T H s \quad \text{where } H \text{ is the } 3 \times 3 \text{ Hessian matrix}
\]

Conclusion

- A curvature tensor is fully described by a 3x3 matrix of 2\(^{nd}\) order derivatives
The Diffusion Tensor

- consider an anisotropic material (e.g. tissue in the human brain)
- water diffuses in this tissue
 - strongly along neural fibers
 - weakly across fibers

Actual image of a dissected human brain

Diffusion tensor

\[D(x, s) = \frac{\partial^2 f(x)}{\partial s^2} \]

diffusivity at a point \(x\) in a direction \(s\)

Diffusion tensor: measured by a technique called **DT-MRI** (diffusion tensor magnetic resonance imaging)
The Diffusion Tensor

First visualization try

- compute hessian $H = \{h_{ij}\}$ in \mathbb{R}^3
- select some slice of interest
- visualize all components h_{ij} using e.g. color mapping

Simple, but not very useful

- we get a lot of images (9)…
- we see the tensor is symmetric…
- …but we don’t really care about diffusion along x, y, z axes!
• fix some point x_0 on the surface
• compute $C(x_0,s)$ for all possible tangent directions s at x_0
• denote $\alpha = \text{angle of } s \text{ with local coordinate axis } x_0$

So we have

$$\frac{\partial^2 f}{\partial s^2} = s^T H s = h_{11} \cos^2 \alpha + (h_{12} + h_{21}) \sin \alpha \cos \alpha + h_{22} \cos^2 \alpha$$

Now, let’s look for the values of α for which this function is extremal!
Our curvature (as function of α) is extremal when $\frac{\partial C}{\partial \alpha} = 0$

This is equivalent to a system of equations

\[
\begin{cases}
 h_{11} \cos \alpha + h_{12} \sin \alpha = \lambda \cos \alpha \\
 h_{21} \cos \alpha + h_{22} \sin \alpha = \lambda \sin \alpha,
\end{cases}
\]

which in matrix form is $Hs = \lambda s$ or $(H - \lambda I)s = 0$

Since we’re looking for the non-trivial solution $s \neq \mathbf{0}$ this means

$$\det(H - \lambda I) = (h_{11} - \lambda)(h_{22} - \lambda) - h_{12}h_{21} = 0$$

Solving the above 2nd order equation in λ yields

• two real values λ_1, λ_2 eigenvalues (principal values) of tensor

Plugging λ_1, λ_2 into $Hs = \lambda s$ yields

• two direction vectors s_1, s_2 eigenvectors (principal directions) of tensor

Summarizing

• Given a 2x2 tensor, we can compute its principal directions and values
 • directions: those in which tensor has extremal (minimal, maximal) values
 Can be shown that eigendirections are orthogonal to each other
 • values: the actual minimal and maximal values

For full details, see Sec. 7.1
How about a 3x3 tensor, like the diffusion tensor?

- 3 eigenvalues, 3 eigenvectors (computed similarly, see Sec. 7.1)

Say we order eigenvalues (and their vectors) as $\lambda_1 > \lambda_2 > \lambda_3$.

- λ_1, s_1: **major** eigenvector i.e. direction of strongest diffusion
- λ_2, s_2: **medium** eigenvector (no particular meaning)
- λ_3, s_3: **minor** eigenvector i.e. direction of weakest diffusion

What if two or more eigenvalues are equal (so we cannot fully order them all)?

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b)</td>
<td>all values ordered: unique eigendirections</td>
</tr>
<tr>
<td>c,d)</td>
<td>equal eigenvalues: eigendirections not determined (any two orthogonal vectors tangent to surface are valid eigendirections)</td>
</tr>
</tbody>
</table>
How to use PCA for visualization?

Visualize mean diffusivity $\mu = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$

white: strong mean diffusivity
black: weak mean diffusivity
Principal Component Analysis

Linear diffusivity

\[c_l = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \]

Fractional anisotropy

\[FA = \sqrt{\frac{3}{2} \sqrt{\frac{\sum_{i=1}^{3} (\lambda_i - \mu)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}}, \quad \text{where} \quad \mu = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3) \]

Relative anisotropy

\[RA = \sqrt{\frac{3}{2} \frac{\sum_{i=1}^{3} (\lambda_i - \mu)^2}{\lambda_1 + \lambda_2 + \lambda_3}} \]

All above measures estimate how much ‘fiber-like’ is the current point

white: strong fibers
Exploit the directional information in the eigenvectors

• major eigenvector e_1: along the **strongest** diffusion direction
• for DTI tensors, it thus indicates fiber directions

Directional color coding

• like for vectors (see Module 4)
• use simple colormap
 \[
 R = |e_1 \cdot x|, \\
 G = |e_1 \cdot y|, \\
 B = |e_1 \cdot z|.
 \]
• use vector glyphs / hedgehogs
• seed only points where c_1, FA or RA are large enough (other points don’t cover fibers)

• OK, but takes training to grasp
Vector PCA

Directional color coding (2nd variant)
- like before, but simply color points by direction
- no glyphs drawn
- no occlusion/clutter
- direction coded \textbf{only} by color – less intuitive images
So far, we only visualized the major eigenvector e_1
- so we reduced a tensor field to a vector field
- we **threw away** existing information (e_2, e_3)

Ellipsoid glyph: Use all eigenvalues + eigenvectors
- orient glyph along eigensystem (e_1, e_2, e_3)
- scale it by eigenvalues ($\lambda_1, \lambda_2, \lambda_3$)

Shapes that an ellipsoid glyph can assume:
- **Strong fiber-like structures**
- **Fiber sheet**
- **Isotropic diffusion**
Tensor Glyphs

Can use other glyph shapes besides ellipsoids

- Ellipsoids
- Cuboids
- Cylinders
- Superquadrics
Tensor Glyphs

Zoom-in on brain DT-MRI dataset

a) ellipsoids
b) cuboids
c) cylinders
d) superquadrics

Superquadrics look arguably most ‘natural’

For full details, see Sec. 7.5
Fiber Tracking

Reuse some other vector visualization methods
- consider major eigenvector field
- trace streamlines
 - **seed:** in regions with high anisotropy (i.e. where fibers are)
 - **stop:** when anisotropy gets too low (i.e. when we leave fibers)

This method is also called **tractography**
Generalize stream tubes

- trace stream tubes in major eigenvector field (like so far)
- use an **elliptic** cross-section
 - oriented along medium + minor eigenvectors
 - scaled with medium + minor eigenvalues

Tube cross-section shows diffusion across fibers

- Thin, round tubes: we’re in a fiber **bundle**
- Thick, flat tubes: we’re in a fiber **sheet**
- Thick, round tubes: we’re **exiting** a fiber
Tensor Visualization Summary

- fundamentally harder than vector visualization
 - 9 values per point (!)
 - classical vector visualization problems (occlusion, seeding, etc)

- methods
 - reduce tensors to scalars (tensor components, PCA or anisotropies)
 - directional and/or color coding of major eigenvector
 - tensor glyphs
 - streamlines, stream tubes
 - hyperstreamlines