Force Directed Graph Layout
You will implement the force-directed graph layout algorithm of Fruchterman and Reingold. The original paper can be found here.

Implementation Requirements:
1. You will use an HTML5 canvas and JavaScript to implement the algorithm.
 Your code should consist of the following files:
 GraphForceLayout.html
 You may base your code off of the code available on GitHub at

 You can grab a copy of GraphForceLayout.html from the repo to serve as starter code.

2. The node positions in the graph are generated iteratively by calculating attractive and repulsive forces. For the vertex n_i, the forces are:

 \[F_a(n_i, n_j) = \frac{||p_j - p_i||^2}{k} (p_j - p_i) \]

 \[F_r(n_i, n_j) = \frac{-k^2}{||p_j - p_i||} (p_j - p_i) \]

 - k is a constant typically set to $k = C \sqrt{(A/N)}$
 - A is the area of the canvas
 - N is the number of nodes
 - C is a constant you pick to make things work well...try $C=1$ to begin
 - F_a is the attractive force calculated along graph edges
 - F_r is the repulsive force calculated between all pairs of nodes
 - n_i and n_j are nodes in the graph
 - p_i and p_j are the positions in space of n_i and n_j

3. You may need to cap the maximum movement of a node per iteration as some constant t and the decrease that by some fraction Δt at each iteration

4. You should animate the layout computation using the techniques described here: https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Basic_animations
Data

For the graph, use a randomly positioned cycle graph. You can generate an \(n \) node random cycle with the following JavaScript:

```javascript
function random_cycle(n, lim_x, lim_y)
{
    var edges=[];
    for(var i=0;i<n;i++)
    {
        edge = {"target":(i+1) % n, "source":i}
        edges.push(edge)
    }
    var nodes=[]
    for(var i=0;i<n;i++)
    {
        var rand_x = Math.random()*lim_x;
        var rand_y = Math.random()*lim_y;
        node = {"x": rand_x, "y": rand_y}
        nodes.push(node)
    }
    var g = {"nodes":nodes,"edges":edges};
    return g;
}
```

In addition, you should include a test of one other graph of your choice. The user interface on the webpage should allow someone to choose which test to run.

Submission

Submit using Compass. Upload the following:

GraphForceLayout.html