Volume Visualization

The Over Operator

Suppose we store colors with an alpha value that indicates the level of transparency with 0 being transparent and 1 being opaque. We will use pre-multiplied alpha. A color (r,g,b) and an alpha value \(\alpha \) is stored as \((ar, ag, ab) \).

Compositing of two colors with alpha values can be accomplished using the over operator: \(C_A \) over \(C_B = C_A + (1-\alpha_A)C_B \)

1. Blending

Suppose \(C_A = (0.5, 0.5, 0.75, 0.75) \)
\[C_B = (0.0, 0.25, 0.25, 0.5) \]

a. Compute \(C_A \) over \(C_B \)
\[
\begin{pmatrix}
\frac{1}{2} & \frac{9}{16} & \frac{13}{16}
\end{pmatrix}
\]

b. Compute \(\alpha_{A\text{over}B} \)
\[
\frac{7}{8}
\]

2. Algebra for the over operator

a. Prove \(C_A \) over \((C_B \) over \(C_C) = (C_A \) over \(C_B \) over \(C_C \)
(Associative Law)

See last page

b. Prove that the Over operator is not commutative
By counterexample: black over white and white over black both with alpha values of 1 produce different colors
3. Image-Order Volume Visualization

Consider the following ray through a volume in which the scalar data are all in \([0,1]\). One particular ray moves through the following 3 cells:

\[
\begin{array}{c|c|c}
0.75 & 0.25 & 0.5 \\
\hline
C_A & C_B & C_C
\end{array}
\]

Suppose the transfer function we use is simply \(I(s) = (1 - s, 0, s, s)\)

Suppose the distance the ray traveled through each cell is 1

a. What is the color produced by a Maximum Intensity Projection?

\[
\begin{align*}
I(3/4) &= (3/4, 3/4, 3/4) \\
\end{align*}
\]

b. What is the color produced by an Average Intensity Projection?

\[
\begin{align*}
I_{AV} &= 1/2 \\
I(1/2) &= (1/2, 0, 1/2, 1/2)
\end{align*}
\]

c. How would the color be produced by compositing with the Over operator? Just write out an expression, don’t do the computation.

\[
\begin{align*}
\frac{3/4(4,0,0) + 1/4(5/8, \frac{9}{8} \cdot 0, \frac{9}{8} \cdot 3/4, \frac{9}{8} \cdot 3/4)}{d_A C_A + (1 - d_A) C_B}
\end{align*}
\]

4. Suppose a ray enters two cells in succession and then leaves the volume:

1. enters a cell with scalar \(s_1\) at \((x_1, y_1)\)
2. enters a cell with scalar \(s_2\) at \((x_2, y_2)\)
3. leaves the volume at \((x_3, y_3)\)

Assume we are using a ray just to integrate the scalar function along a line. Derive a formula for the accumulated value along the ray.

\[
S = \frac{s_1 \text{ dist}(P_1, P_2) + s_2 \text{ dist}(P_2, P_3)}{\text{dist}(P_1, P_3)}
\]

For visualization we may normalize \(S/\text{dist}(P_1, P_3)\)
2. Algebra for the Over operator

a. Prove \(C_A \over (C_B \over C_C) = (C_A \over C_B) \over C_C \)

(Associative Law)

Assume \(C_A \neq C_B \neq C_C \)

\[
C_A + (1 - x_A) \left(C_B + (1 - x_B) C_C \right) \\
C_A + (1 - x_A) C_B + (1 - x_B) (1 - x_D) C_C \\
C_{AB} + \left((1 - x_A) - (1 - x_B)x_D \right) C_C \\
1 - (x_A + (1 - x_B)x_D) C_C \\
\]

For pre-multiplied \(\alpha \)