Multiple Access Media

- **Media access**
 - Controlling which frame should be sent over the link next
 - Easy for point-to-point links; half versus full duplex
 - Harder for multi-access links: who gets to send?

- **Multiple senders on some media**
 - Buses (Ethernet)
 - Radio, Satellite

- **Goals**
 - Fair arbitration
 - Good performance
Point-to-Point vs. Broadcast Media

- **Point-to-point:** dedicated pairwise communication
 - Long-distance fiber link
 - Point-to-point link between Ethernet switch and host
- **Broadcast:** shared wire or medium
 - Traditional Ethernet
 - 802.11 wireless LAN

![Diagram showing shared wire, shared wireless, satellite, and cocktail party concepts.](image-url)
Types of Shared Link Networks

Bus Topology: Shared Ethernet, Token Bus

Ring Topology: Multihop FDDI, IEEE 802.5

Star Topology: Active or Passive Hub ATM

Wireless: Shared IEEE 802.11
Multiple Access Algorithm

- Single shared broadcast channel
 - Must avoid having multiple nodes speaking at once
 - Otherwise, collisions lead to garbled data
 - Need distributed algorithm for sharing the channel
 - Algorithm determines which node can transmit

- Typical assumptions
 - Communication needs vary
 - Over time
 - Between hosts
 - Network is not fully utilized

- video
Which kind of multiplexing is best?

- Channel partitioning: divide channel into pieces
 - Frequency-division multiplexing (FDM, separate bands)
- Taking turns: scheme for trading off who gets to transmit
 - Time-division multiplexing (TDM, synchronous time slots)
 - Statistical time-division multiplexing (STDM, time slots on demand)

These techniques are useful

- But they have a number of limitations
- They do not support bursty traffic efficiently
 - Lots of unused capacity, …
 - … while active users squeeze their bit stream through a very thin pipe
- Work best in a provisioned service
 - Management of frequencies, time slots, placement of devices, etc.
Multiple Access Media: Random Access

- **Random access**
 - Allow collisions, and then recover
 - Optimize for the common case (no collision)
 - Don’t avoid collisions, just recover from them….

- **When node has packet to send**
 - Transmit at full channel data rate
 - No a priori coordination among nodes

- **Two or more transmitting nodes ⇒ collision**
 - Data lost

- **Random access MAC protocol specifies**
 - How to detect collisions
 - How to recover from collisions
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

- **Aloha Packet Radio Network**
 - First data communication system for Hawaiian islands
 - Hub at U. Hawaii, Oahu
 - Two radio channels
 - Random access: for sites sending data
 - Broadcast for hub rebroadcasting data

- **Ethernet**
 - CSMA/CD for LANs
Pure ALOHA

- Developed in University of Hawaii in early 1970's
- Keep it simple
 - User transmits at will
 - If two or more messages overlap in time → collision
 - Receiver cannot decode packets
 - Wait roundtrip time plus a fixed increment → collision
 - Lack of ACK
 - After a collision
 - Colliding stations retransmit
 - Stagger attempts randomly to reduce repeat collisions
 - After several attempts, senders give up
- Simple but wasteful
 - Max efficiency of at most $1/(2e) = 18\%$!
Pure ALOHA

- **User model**
 - \(N \) transmitters
 - Each transmitter hooked to one terminal
 - One person at each terminal
 - Person types a line, presses return
 - Transmitter sends line
 - Each station transmits \(\lambda \) packets/sec on average based on a Poisson arrival process
 - Checks for success (no interference)
 - If collision occurred, wait random time and resend
Pure ALOHA

Station 1
Frame 1.1
Frame 1.2
Collision duration
Frame 2.1
Frame 2.2
Time
Station 2
Frame 3.1
Frame 3.2
Collision duration
Frame 4.1
Frame 4.2
Time
Station 3
Station 4
© CS 498wn Staff, University of Illinois Fall 2018
Pure ALOHA

Collisions

- A frame will not suffer a collision if no other frames are sent within one frame time of its start.
- Let $t = \text{time to send a frame}$.
- If any other user has generated a frame between time t_0 and time $t_0 + t$, the end of that frame will collide with the beginning of our frame.
- Similarly, any other frame started between time $t_0 + t$ and time $t_0 + 2t$ will collide with the end of our frame.
Pure ALOHA

B’s end collides with A’s beginning

A’s end collides with C’s beginning

Vulnerable time = 2 × T_{fr}
Pure ALOHA

- Also assume fixed packet sizes (maximizes throughput)

- Arrival and success rates
 - Frames generated at rate S
 - In steady state, must leave at S as well
 - Some frames retransmitted
 - Assume also Poisson with rate $G, G > S$

- $S = G P_0$
 - P_0 is the probability of successful transmission
Pure Aloha Analysis

- **Maximum throughput**
 - $G = 0.5$
 - $S = 1/2e$

- **Utilization**
 - Maximum of 0.184!
Slotted ALOHA

- Hosts wait for next slot to transmit
 - Slot time units = m (message length)
 - Modify Aloha by allowing users to attempt transmission at the beginning of a time slot only
 - All users need to be synchronized in time.

- Vulnerable period is now cut in half (T)
 - Doubles max throughput
Slotted Aloha

- **Station 1**: Frame 1.1, Frame 1.2
- **Station 2**: Frame 2.1, Frame 2.2
- **Station 3**: Frame 3.1
- **Station 4**: Frame 4.1, Frame 4.2

Time axis: Slot 1, Slot 2, Slot 3, Slot 4, Slot 5, Slot 6
Slotted ALOHA

- In each interval m
 - Mean number of frames generated is G
 - The probability of no other traffic being generated during the entire vulnerable period is
 - $P_0 = e^{-G}$
 - $S = Ge^{-G}$

Note: Not $2G$

- Max S $1/e = 0.368$
 - at $G = 1$.
Slotted ALOHA

- **Maximum throughput**
 - $G = 1$
 - $S = 1/e$

- **Utilization**
 - Maximum of 0.368!
 - 37% empty slots
 - 37% successes
 - 26% collisions

![Diagram showing slotted and pure ALOHA throughput with graphs for $S = Ge^{-G}$ and $S = Ge^{-2G}$]
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only need slot synchronization
- Simple

Cons
- Wasted slots:
 - Idle
 - Collisions
- Nodes should detect collision in less than time to transmit packet
- Clock synchronization
Slotted ALOHA

- **Performance**
 - Higher values of G
 - Reduces the number of empty slots
 - Increases the number of collisions exponentially
 - Small increases in channel load can drastically reduce performance

- **Limitations**
 - Slotted Alohas has twice the performance of basic Aloha, but performance is still poor
 - Slotted design is also not very efficient when carrying variable sized packets!
 - Also (slightly) longer delay than pure Aloha
 - Still, not bad for an absolutely minimal protocol!
 - How do we go faster?
ALOHA Analysis

- Tradeoff
 - Pure ALOHA provides smaller delays
 - Slotted ALOHA provides higher throughput
From Aloha comes Ethernet

- **Ethernet - CSMA/CD**
 - **CS – Carrier Sense**
 - Nodes can distinguish between an idle and a busy link
 - **MA - Multiple Access**
 - A set of nodes send and receive frames over a shared link
 - **CD – Collision Detection**
 - Nodes listen during transmission to determine if there has been interference
Ethernet MAC Algorithm

Node A starts transmission at time 0.

At time almost T, node A’s message has almost arrived.

Node B starts transmission at time T.

How can we ensure that A knows about the collision?
Collision Detection

- **Problem**
 - How can A detect a collision?

- **Solution**
 - A must still be transmitting when it receives B’s transmission!

- **Example**
 - Node A’s message reaches node B at time T
 - Node B’s message reaches node A at time $2T$
 - For node A to detect a collision, node A must still be transmitting at time $2T$
Ethernet MAC Algorithm

Node A starts transmission at time 0.

At time almost T, node A’s message has almost arrived.

Node B starts transmission at time T.

At time 2T, A is still transmitting and notices a collision.
Collision Detection

- **IEEE 802.3**
 - 2T is bounded to 51.2µs
 - At 10Mbps 51.2µs = 512b or 64 = 512b or 64B
 - Packet length ≥ 64B

- **Jam after collision**
 - Ensures that all hosts notice the collision
Ethernet MAC Algorithm

- **Sender/Transmitter**
 - If line is idle (carrier sensed)
 - Send immediately
 - Send maximum of 1500B data (1527B total)
 - Wait 9.6 μs before sending again
 - If line is busy (no carrier sense)
 - Wait until line becomes idle
 - Send immediately (1-persistent)
 - If collision detected
 - Stop sending and jam signal
 - Try again later

Why have a max size?
Want to prevent one node from taking over completely.

Why 9.6 μs?
Too long: wastes time
Too short: doesn't allow other nodes to transmit (fairness)

Incoming signal \neq outgoing signal!
Retransmission

- How long should a host wait to retry after a collision?
- What happens if the host waits too long?
 - Wasted bandwidth
- What happens if the host doesn’t wait long enough?
 - More collisions

Ethernet Solution

- Binary exponential backoff
 - Maximum backoff doubles with each failure
 - After N failures, pick an N-bit number
 - \(2^N\) discrete possibilities from 0 to maximum
Binary Exponential Backoff

- **Choices after 1 collision**
 - 0
 - \(Ts \)

- **Choices after 2 collisions**

- **Time of collision**
 - Why use fixed time slots?
 - How long should the slots be?

© CS 498wn Staff, University of Illinois Fall 2018
Binary Exponential Backoff

- For IEEE 802.3, $T = 51.2 \ \mu s$
- Consider the following
 - k hosts collide
 - Each picks a random number from 0 to $2^{(N-1)}$
 - If the minimum value is unique
 - All other hosts see a busy line
 - Note: Ethernet RTT < 51.2 μs
 - If the minimum value is not unique
 - Hosts with minimum value slot collide again!
 - Next slot is idle
 - Consider the next smallest backoff value
Binary Exponential backoff algorithm

- When collision first occurs
 - Send a jamming signal to prevent further data being sent
- Resend a frame
 - After either 0 or T seconds, chosen at random
- If resend fails, resend the frame again
 - After either 0, T, $2T$, or $3T$ seconds.
 - In other words, send after kT seconds, where k is a random integer with $0 \leq k < 2^2$
- If that still doesn't work, resend the frame again
 - After kT, where k is a random number with $0 \leq k < 2^3$
- In general, after the n^{th} failed attempt, resend the frame after kT, where k is a random number and $0 \leq k < 2^n$
Medium Access Control

- **IEEE 802.11**
 - A physical and multiple access layer standard for wireless local area networks (WLAN)

- Ad Hoc Network: no servers or access points

- Client Server Network
Medium Access Control

- Wireless channel is a shared medium
- Need access control mechanism to avoid interference
- Why not CSMA/CD?
Ethernet MAC Algorithm

- Listen for carrier sense before transmitting
- Collision: What you hear is not what you sent!
CSMA/CD in WLANs?

- Most radios are functionally half-duplex
 - Listening while transmitting is not possible
 - Ratio of transmitted signal power to received power is too high at the transmitter
 - Transmitter cannot detect competing transmitters (is deaf while transmitting)

- Collision might not occur at sender
 - Collision at receiver might not be detected by sender!

Why do collisions happen?

- Near simultaneous transmissions
 - Period of vulnerability: propagation delay
Wireless Ethernet - CSMA/CA

- **CS** – Carrier Sense
 - Nodes can distinguish between an idle and a busy link

- **MA** - Multiple Access
 - A set of nodes send and receive frames over a shared link

- **CD** – Collision Detection
 - Nodes listen during transmission to determine if there has been interference
Wireless Ethernet - CSMA/CA

- **CS** – Carrier Sense
 - Nodes can distinguish between an idle and a busy link

- **MA** - Multiple Access
 - A set of nodes send and receive frames over a shared link

- **CA** – Collision *Avoidance*
 - Nodes use protocol to prevent collisions from occurring
IEEE 802.11 MAC Layer Standard

- Similar to Ethernet
- But consider the following:
Hidden Terminal Problem

- Node B can communicate with both A and C
- A and C cannot hear each other
- When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
- If C transmits, collision will occur at node B
MACA Solution for Hidden Terminal Problem

- When node A wants to send a packet to node B
 - Node A first sends a Request-to-Send (RTS) to A
- On receiving RTS
 - Node A responds by sending Clear-to-Send (CTS)
 - provided node A is able to receive the packet
- When a node C overhears a CTS, it keeps quiet for the duration of the transfer
IEEE 802.11 MAC Layer Standard

- But we still have a problem
Exposed Terminal Problem

- B talks to A
- C wants to talk to D
- C senses channel and finds it to be busy
- C stays quiet (when it could have ideally transmitted)
MACA Solution for Exposed Terminal Problem

- Sender transmits Request to Send (RTS)
- Receiver replies with Clear to Send (CTS)
- Neighbors
 - See CTS - Stay quiet
 - See RTS, but no CTS - OK to transmit
Capture Effect

- C will almost always “win” if there is a collision at B
 - Can lead to extreme unfairness and even starvation
- Solution is power control
 - Very difficult to manage in a non-provisioned environment!
IEEE 802.11 MAC Layer Standard

- **MACAW** – Multiple Access with Collision Avoidance for Wireless
 - Sender transmits Request to Send (RTS)
 - Receiver replies with Clear to Send (CTS)
 - Neighbors
 - See CTS
 - Stay quiet
 - See RTS, but no CTS
 - OK to transmit
 - Receiver sends ACK for frame
 - Neighbors stay silent until they hear ACK
Collisions

- Still possible
 - RTS packets can collide!

- Binary exponential backoff
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission
 - Performed by stations that experience RTS collisions

- RTS collisions not as bad as data collisions in CSMA
 - Since RTS packets are typically much smaller than DATA packets
Reliability

- Wireless links are prone to errors
 - High packet loss rate detrimental to transport-layer performance
- Mechanisms needed to reduce packet loss rate experienced by upper layers
A Simple Solution to Improve Reliability - MACAW

- When node B receives a data packet from node A, node B sends an Acknowledgement (ACK)
- If node A fails to receive an ACK
 - Retransmit the packet
Revisiting the Exposed Terminal Problem

- Problem
 - Exposed terminal solution doesn't consider CTS at node C
 - With RTS-CTS, C doesn't wait since it doesn't hear A's CTS
 - With B transmitting DATA, C can't hear intended receiver's CTS
 - C trying RTS while B is transmitting is useless
Revisiting the Exposed Terminal Problem - MACAW

One solution
- Have C use carrier sense before RTS

Alternative
- B sends DS (data sending) packet before DATA
 - Short packet lets C know that B received A’s CTS
 - Includes length of B’s DATA so C knows how long to wait
Backoff Algorithm

- Binary exponential backoff (BEB)
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission

- Unfair channel allocation!
 - Successful transmitters reset backoff counter to minimum value
 - It is more likely that successful transmitters continue to be successful
 - If there is no maximum backoff
 - One station can get the entire channel bandwidth

- Ideally
 - The backoff counter should reflect the ambient congestion level which is the same for all stations involved!
Deafness

For the scenario below

- Node A sends an RTS to B
 - While node C is receiving from D,
- Node B cannot reply with a CTS
 - B knows that D is sending to C
 - A keeps retransmitting RTS and increasing its own BO timeout
Revisiting the Exposed Terminal Problem - MACAW

- One solution
 - Have C use carrier sense before RTS

- Alternative
 - B sends DS (data sending) packet before DATA
 - Short packet lets C know that B received A’s CTS
 - Includes length of B’s DATA so C knows how long to wait
Backoff Algorithm

- Binary exponential backoff (BEB)
 - Backoff counter doubles after every collision and reset to minimum value after successful transmission

- Unfair channel allocation!
 - Successful transmitters reset backoff counter to minimum value
 - It is more likely that successful transmitters continue to be successful
 - If there is no maximum backoff
 - One station can get the entire channel bandwidth

- Ideally
 - The backoff counter should reflect the ambient congestion level which is the same for all stations involved!
Deafness

- For the scenario below
 - Node A sends an RTS to B
 - While node C is receiving from D,
 - Node B cannot reply with a CTS
 - B knows that D is sending to C
 - A keeps retransmitting RTS and increasing its own BO timeout
Have B do contention on behalf of A
- If B receives RTS for which it must defer CTS reply
- Then B later sends RRTS to A when it can send
- A responds by starting normal RTS-CTS
- Others hearing RRTS defer long enough for RTS-CTS
Another MACAW Proposal

- This approach, however, does not work in the scenario below
 - Node B may not receive the RTS from A at all, due to interference with transmission from C
Broadcast/Multicast

- **Problem**
 - Basic RTS-CTS only works for unicast transmissions

- **For multicast**
 - RTS would get CTS from each intended receiver
 - Likely to cause (many) collisions back at sender
Multicast - MACAW

- Sort-of solution
 - Don’t use CTS for multicast data

- Receivers recognize multicast destination in RTS
 - Don’t return CTS
 - Sender follows RTS immediately by DATA
 - After RTS, all receivers defer for long enough for DATA

- Helps, but doesn’t fully solve problem
 - Like normal CSMA, only those in range of sender will defer
 - Others in range of receiver will not defer
IEEE 802.11

- MAC functionality
 - Addressing
 - CSMA/CA
- Error detection (FCS)
- Error correction (ACK frame)
- Flow control: stop-and-wait
- Fragmentation (More Frag)
- Collision Avoidance (RTS-CTS)
IEEE 802.11 Wireless MAC

- Distributed and centralized MAC components
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- DCF suitable for multi-hop ad hoc networking
- DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol
IEEE 802.11 DCF

- Uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to achieve reliability
- Any node receiving the RTS cannot transmit for the duration of the transfer
 - To prevent collision with ACK when it arrives at the sender
 - When B is sending data to C, node A keeps quite
IEEE 802.11 CSMA/CA

- Nodes stay silent when carrier sensed
 - Physical carrier sense
 - Virtual carrier sense
 - Network Allocation Vector (NAV)
 - NAV is updated based on overheard RTS/CTS/DATA/ACK packets, each of which specified duration of a pending transmission
- Backoff intervals used to reduce collision probability
IEEE 802.11 Physical Carrier Sense

Interference range

Carrier sense range

Transmit range

Packet
IEEE 802.11 Virtual Carrier Sense

Pretending a circular range

RTS = Request-to-Send
IEEE 802.11 Virtual Carrier Sense

NAV = remaining duration to keep quiet

RTS = Request-to-Send

NAV = 10
IEEE 802.11 Virtual Carrier Sense

CTS = Clear-to-Send
IEEE 802.11 Virtual Carrier Sense

CTS = Clear-to-Send

NAV = 8
IEEE 802.11 Virtual Carrier Sense

- DATA packet follows CTS
IEEE 802.11 Virtual Carrier Sense

- Successful data reception acknowledged using ACK
IEEE 802.11

Reserved area

ACK
More features

- Use of RTS/CTS is controlled by an RTS threshold
 - Only used for data packets > threshold
 - Pointless to use RTS/CTS for short data packets
 - High overhead!

- Number of retries is limited by a Retry Counter
 - Short retry counter
 - For packets shorter than RTS threshold
 - Long retry counter
 - For packets longer than RTS threshold

- Packets can be fragmented.
 - Each fragment is acknowledged
 - But all fragments are sent in one sequence
 - Sending shorter frames can reduce impact of bit errors
 - Lifetime timer: maximum time for all fragments of frame
Ethernet vs. IEEE 802.11

- If carrier is sensed
 - Send immediately
 - Send maximum of 1500B data (1527B total)
 - Wait 9.6 µs before sending again

- If carrier is sensed
 - When should a node transmit?
Interframe Spacing

- Interframe spacing
 - Plays a large role in coordinating access to the transmission medium

- Varying interframe spacings
 - Creates different priority levels for different types of traffic!

- 802.11 uses 4 different interframe spacings
IEEE 802.11 - CSMA/CA

- Sensing the medium
 - If free for an Inter-Frame Space (IFS)
 - Station can start sending (IFS depends on service type)
 - If busy
 - Station waits for a free IFS, then waits a random back-off time (collision avoidance, multiple of slot-time)
- If another station transmits during back-off time
 - The back-off timer stops (fairness)
Types of IFS

- **SIFS**
 - Short interframe space
 - Used for highest priority transmissions
 - RTS/CTS frames and ACKs

- **DIFS**
 - DCF interframe space
 - Minimum idle time for contention-based services (> SIFS)
Types of IFS

- **PIFS**
 - PCF interframe space
 - Minimum idle time for contention-free service (>SIFS, <DIFS)

- **EIFS**
 - Extended interframe space
 - Used when there is an error in transmission
IEEE 802.11 - Competing Stations

- **busy**: medium not idle (frame, ack etc.)
- **bo_e**: elapsed backoff time
- **bo_r**: residual backoff time
- **packet arrival at MAC**

Diagram showing the process of competing stations accessing the medium.
Backoff Interval

- When transmitting a packet, choose a backoff interval in the range $[0, CW]$.
 - CW is contention window
- Count down the backoff interval when medium is idle.
 - Count-down is suspended if medium becomes busy.
- When backoff interval reaches 0, transmit RTS.
DCF Example

B1 = 25
B2 = 20

B1 = 5
B2 = 15

B2 = 10

B1 and B2 are backoff intervals at nodes 1 and 2.

CW = 31
Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
- Large CW
 - Large backoff intervals
 - Can result in larger overhead
- Small CW
 - Larger number of collisions (when two nodes count down to 0 simultaneously)
Backoff Interval

- The number of nodes attempting to transmit simultaneously may change with time
 - Some mechanism to manage contention is needed
- IEEE 802.11 DCF
 - Contention window CW is chosen dynamically depending on collision occurrence
Binary Exponential Backoff in DCF

- When a node fails to receive CTS in response to its RTS, it increases the contention window
 - cw is doubled (up to an upper bound)
- When a node successfully completes a data transfer, it restores cw to CW_{\min}
 - cw follows a sawtooth curve
IEEE 802.11 Frame Format

- **Types**
 - control frames, management frames, data frames

- **Sequence numbers**
 - important against duplicated frames due to lost ACKs

- **Addresses**
 - receiver, transmitter (physical), BSS identifier, sender (logical)

- **Miscellaneous**
 - sending time, checksum, frame control, data
IEEE 802.11 Data Frame Format

<table>
<thead>
<tr>
<th>bytes</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration/ID</td>
<td>Address 1</td>
<td>Address 2</td>
<td>Address 3</td>
<td>Sequence Control</td>
<td>Address 4</td>
<td>Data</td>
<td>CRC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bits</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol version</td>
<td>Type</td>
<td>Subtype</td>
<td>To DS</td>
<td>From DS</td>
<td>More Frag</td>
<td>Retry</td>
<td>Power Mgmt</td>
<td>More Data</td>
<td>WEP</td>
</tr>
</tbody>
</table>

© CS 498wn Staff, University of Illinois Fall 2018
IEEE 802.11 Control Frame Format

- **Acknowledgement**

- **Request To Send**

- **Clear To Send**
Fairness Issue

- Many definitions of fairness plausible
- Simplest definition
 - All nodes should receive equal bandwidth

Two flows
Fairness Issue

- Assume that initially, A and B both choose a backoff interval in range [0,31] but their RTSs collide.
- Nodes A and B then choose from range [0,63]
 - Node A chooses 4 slots and B choose 60 slots
 - After A transmits a packet, it next chooses from range [0,31]
 - It is possible that A may transmit several packets before B transmits its first packet

Two flows

A --- B

C --- D
Fairness Issue

- **Unfairness**
 - When one node has backed off much more than some other node

- **MACAW Solution**
 - When a node transmits a packet
 - Append the CW value to the packet
 - All nodes hearing that CW value use it for their future transmission attempts
 - CW is an indication of the level of congestion in the vicinity of a specific receiver node
 - MACAW proposes maintaining CW independently for each receiver
 - Per-receiver CW is particularly useful in multi-hop environments
 - Congestion level at different receivers can be very different
IEEE 802.11 Amendments

- **IEEE 802.11-1997:**
 - Originally 1 Mbit/s and 2 Mbit/s
 - 2.4 GHz RF and infrared (IR)

- **IEEE 802.11a:**
 - 54 Mbit/s, 5 GHz standard (2001)

- **IEEE 802.11b:**
 - Enhancements to support 5.5 and 11 Mbit/s (1999)

- **IEEE 802.11c:**
 - Bridge operation procedures;
 - Included in the IEEE 802.1D standard (2001)

- **IEEE 802.11d:**
 - International (country-to-country) roaming extensions (2001)

- **IEEE 802.11e:**
 - Enhancements: QoS, including packet bursting (2005)

- **IEEE 802.11g:**
 - 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)

- **IEEE 802.11h:**
 - Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)

- **IEEE 802.11i:**

- **IEEE 802.11j:**

- **IEEE 802.11-2007:**
 - Updated standard including a, b, d, e, g, h, i and j. (2007)
IEEE 802.11 Amendments

- **IEEE 802.11k:**
 - Radio resource measurement enhancements (2008)

- **IEEE 802.11n:**
 - Higher throughput improvements using MIMO (multiple input, multiple output antennas) (September 2009)

- **IEEE 802.11p:**
 - WAVE—Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (2010)

- **IEEE 802.11r:**
 - Fast BSS transition (FT) (2008)

- **IEEE 802.11s:**
 - Mesh Networking, Extended Service Set (ESS) (2011)

- **IEEE 802.11u:**
 - Improvements related to HotSpots and 3rd party authorization of clients, e.g. cellular network offload (2011)

- **IEEE 802.11v:**
 - Wireless network management (2011)

- **IEEE 802.11w:**
 - Protected Management Frames (2009)

- **IEEE 802.11y:**

- **IEEE 802.11z:**
 - Extensions to Direct Link Setup (DLS) (2010)
IEEE 802.11 Amendments

- **IEEE 802.11-2012:**
 - New release including k, n, p, r, s, u, v, w, y and z (2012)

- **IEEE 802.11aa:**
 - Robust streaming of Audio Video Transport Streams (2012)

- **IEEE 802.11ac:**
 - Very High Throughput < 6GHz
 - Potential improvements over 802.11n: better modulation scheme (expected ~10% throughput increase), wider channels (estimate in future time 80 to 160 MHz), multi user MIMO (2012)

- **IEEE 802.11ad:**
 - Very High Throughput 60 GHz (~ February 2014)

- **IEEE 802.11ae:**
 - Prioritization of Management Frames (2012)

- **IEEE 802.11af:**
 - TV Whitespace (February 2014)
In process amendments

- **IEEE 802.11ah:**
 - Sub 1 GHz sensor network, smart metering (~March 2016)

- **IEEE 802.11ai:**
 - Fast Initial Link Setup (~November 2015)

- **IEEE 802.11aj:**
 - China MM Wave (~June 2016)

- **IEEE 802.11aq:**
 - Pre-association Discovery (~July 2016)

- **IEEE 802.11ak:**
 - General Links (~ May 2016)

- **IEEE 802.11mc:**
 - Maintenance of the standard (~March 2016)

- **IEEE 802.11ax:**
 - High Efficiency WLAN (~ May 2018)

- **IEEE 802.11ay:**
 - Enhancements for Ultra High Throughput in and around the 60 GHz Band (~TBD)

- **IEEE 802.11az:**
 - Next Generation Positioning (~TBD)

- **IEEE 802.11ba**
 - Wake Up Radio (~July 2020)

- **IEEE 802.11bb:**
 - Light Communications
Other Technologies

- IEEE 802.15 Wireless PAN
- IEEE 802.15.1
 - Bluetooth
- IEEE 802.15.2
 - IEEE 802.15 and IEEE 802.11 coexistence
- IEEE 802.15.3
 - High-Rate wireless PAN (e.g., UWB, etc)
- IEEE 802.15.4
 - Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)
- IEEE 802.15.5
 - Mesh networking for WPAN
- IEEE 802.15.6
 - Body area network
- IEEE 802.15.7
 - Visible light communications
- IEEE 802.16
 - Broadband Wireless Access (WiMAX certification)