Energy Conservation Techniques

- Wi-Fi devices consume significant amounts of energy when idle
 - Idle > 1W

- Conservation Approach: Device suspension (sleep)
 - Reduced energy consumption
 - Sleep ~ 0.05W
 - Suspended communication capabilities
 - Buffer overflow
 - Wasted bandwidth
 - Lost messages
 - If all nodes are asleep, no one can communicate!
Communication Device Suspension

- **Goal**
 - Remain awake when there is active communication
 - Otherwise, suspend
 - Adapt the sleep duration to reflect the communication patterns of the application

- **Ideal**
 - Sleep whenever there is no data to receive from the base station
 - Wake up for any incoming receptions
Communication Device Suspension

Problems

How can a sender differentiate between a suspended node and a node that has gone away?
- Suspended receiver \Rightarrow buffer packet
- Confused sender \Rightarrow dropped packet, extra energy consumption

How can a suspended node know there is communication for it?
- Wake up too soon \Rightarrow waste energy
- Wake up too late \Rightarrow delay/miss packets
Communication Device Suspension

- **Approach**
 - Ensure overlap between sender’s and receiver’s awake times

- **Protocols**
 - Triggered Resume
 - Periodic Resume
 - Synchronous
 - Asynchronous
Triggered Resume

Approach

- Use a second control channel (second radio)
 - Sender transmits RTS or beacon messages in control channel
 - Receiver replies in control channel and turns on main channel
- Main channel is only used for data
- Second channel
 - Must consume less energy than the main channel
 - Must not interfere with the main channel
 - Ex: BLE, ZigBee
Triggered Resume

- **Approach – Data only**
 - **Data channel**
 - Power off radio when data is destined to a different node
 - **Control channel**
 - Probe neighbors to find longest remaining transfer

![Diagram showing node A, B, C, D, and E with awake/listen, RTS/CTS, and data transmission/reception states.][1]
Triggered Resume

- **Dual radio**
 - Low duty cycle paging channel to wake up a neighboring node
 - Use separate radio for the paging channel to avoid interference with regular data forwarding
 - Trades off energy savings for setup latency

[Diagram showing two nodes: one labeled "Wakeup plane: f_1" and the other "Data plane: f_2".]
Triggered Resume

- Dual radio

- Node A - control
- Node A - data
- Node B - control
- Node B - data

Legend:
- Awake/listen
- Transmit request
- Receive and reply
- Data transmission/reception

Time
Triggered Resume

- Challenges
 - Two radios are more complex than one
 - Channel characteristics may not be the same for both radios
 - A successful RTS on the control channel does not guarantee the reverse channel works
 - A failed RTS on the control channel does not indicate that the reverse channel does not work
Periodic Resume

Approach
- Suspend most of the time
- Periodically resume to check for pending communication

Communication indications
- Out-of-band channel
- In-band signaling

Protocols
- Synchronous
- Asynchronous
Synchronous Periodic Resume

- **Basic Idea**
 - Time is slotted
 - Nodes selectively remain awake for full slot duration
 - Discovery occurs when two active slots overlap
 - If all nodes are synchronized, all nodes are guaranteed to have overlapping awake periods

![Diagram of awake slots](image)
Synchronous Periodic Resume

- **Protocol:** IEEE 802.11 Power Save Mode (PSM)
- Nodes are synchronized and wake up periodically (Beacon Period)
- Each beacon period is broken up into two segments
 - Ad-hoc Traffic Indication Map (ATIM) Window
 - Announcement in the ATIM indicates data
 - Target node responds with an ATIM ACK
 - If a node receives no announcements, it goes back to sleep
 - Transmission period
 - Sender can transmit packet until the end of the beacon period
Synchronous Periodic Resume

- **IEEE 802.11 PSM**

Node 1
- \(B_1\)

Node 2
- \(B_2\)

ATIM window

beacon interval

\(t\)

- **awake**
- **Random Delay**
- **Transmit ATIM**
- **Transmit Data**
- **Beacon Frame**
- **Acknowledge ATIM**
- **Acknowledge Data**
Synchronous Periodic Resume

- **Centralized solution**
 - Synchronization driven by base station
 - In beacon message

- **Distributed solution**
 - No base station
 - Synchronization protocols can be used to loosely synchronize nodes
 - Nodes wake up for a short period and check for channel activity
 - Return to sleep if no activity detected
Distributed Synchronous Periodic Resume

- Persistent loose synchronization
- Constant, high synchronization overhead

A knows when B is awake

A has data for B

A sends data when B is awake

© CS/ECE 439 Staff, University of Illinois Fall 2018
Distributed Synchronous Periodic Resume

- **Signaling**
 - No synchronization overhead
 - High signaling overhead
 - Long preambles, all nodes wake up

A has data for B
Long preamble wakes up B

Overhearing

Unnecessary preamble
Distributed Synchronous Periodic Resume

- **Signaling: Wake-up packets**
 - Send wake-up packets instead of preamble
 - Wake-up packets tell when data is starting so that receiver can go back to sleep as soon as it receives one wake-up packet

A has data for B
Distributed Synchronous Periodic Resume

- **Signaling: Multiple send**
 - Send data several times
 - Receiver can listen at any time and get all data

- **Problem with all approaches**
 - Communication costs are mostly paid by the sender
 - The amount of time the sender spends transmitting may be much longer than the actual data length
Synchronous Periodic Resume

Problems

- Maintaining synchronization may be difficult
- Throughput is limited by the size of the notification window
 - If the notification window is too small, packets get buffered
 - Buffers may eventually overflow
Asynchronous Periodic Resume

- **Approach**
 - Stay awake longer to guarantee overlap of awake periods
 - Overlap is guaranteed if the awake periods are more than half the beacon period

![Diagram showing the concept of asynchronous periodic resume with nodes 1 and 2, highlighting awake and suspend periods with respect to beacon interval.]
Asynchronous Periodic Resume

- **Basic protocol**
 - Use beacon messages at the start of awake periods
 - Some protocols use notification messages (similar to ATIM)
Asynchronous Periodic Resume

Problem

- No guarantee that all nodes will hear each other’s beacon or notification messages
Asynchronous Periodic Resume

Solution

- Have a beacon at the beginning and end of the beacon interval
Asynchronous Periodic Resume

- **Alternate solution**
 - Beacon at the beginning of odd periods
 - Beacon at the end of even periods
Asynchronous Periodic Resume

- **Problem**
 - Nodes stay awake more than half the time
 - Wastes too much energy!

![Diagram showing Beacon Interval and Suspend Period for Node 1 and Node 2. The diagram illustrates the time periods when nodes are awake and suspended.]
Asynchronous Periodic Resume

- **Reduce awake time**
 - Do not wake up every beacon interval
 - Delay depends on number of overlapping intervals

![Diagram showing beacon interval and awake periods for Node 1 and Node 2.](image-url)
Asynchronous Periodic Resume

- Randomized Approach
 - Birthday protocol
 - Randomly select a slot to wake up in with a given probability
 - Advantage
 - Good average case performance
 - Disadvantage
 - No bounds on worst-case discovery latency
Asynchronous Periodic Resume

- **Extended sleep**
 - Wake up once every T intervals
 - Adds delay up to $T \times$ length of beacon interval

![Diagram of beacon interval, awake period, and notification window between nodes 1 and 2.]

© CS/ECE 439 Staff, University of Illinois Fall 2018
Asynchronous Periodic Resume

- **Quorum**
 - Increase number of beacon intervals in cycle \(n \)
 - Increase number of awake periods \(2n - 1 \) of \(n^2 \)

Delay is determined by where the overlap is (worst case \(n^2 \))
Asynchronous Periodic Resume

- **Quorum**
 - Example: \(n = 4, n^2 = 16, 2n-1 = 7 \)
 - Two overlapping intervals: delay = \(n^2 - 2 \)

![Node i and Node j diagrams with colors indicating awake states]
Asynchronous Periodic Resume

- **Deterministic**
 - Find a feasible overlapping pattern
 - Guarantee at least one overlapping interval
 - Requires knowledge of number of nodes

![Awake pattern diagram](image)
Asynchronous Periodic Resume

- Deterministic: Prime-based
 - Disco
 - Pick two primes p_1 and p_2
 - Wake up every p_1 and p_2 slot
 - Guarantees discovery in $p_1 \times p_2$ slots
Asynchronous Periodic Resume

- Deterministic: Prime-based
 - U-Connect
 - Select 1 prime p
 - Wake up every pth slot and $(p-1)/2$ slots every p^2 slots
 - Overlap is guaranteed within p^2 slots
Asynchronous Periodic Resume

- Searchlight
 - Have a deterministic discovery schedule that has a pseudo-random component
Asynchronous Periodic Resume

- **Searchlight**
 - Two slots per \(t \) slots (period)
 - Anchor slot: Keep one slot fixed at slot 0
 - Probe slot: Move around the other slot sequentially
 - Guaranteed overlap in \(\frac{t^2}{2} \) slots
 - Based on the time needed to ensure a probe-anchor overlap
 - Probe-probe overlap can also lead to discovery
 - Sequential scanning means less chance of a probe-probe overlap

Discovery through anchor-probe overlap
Asynchronous Periodic Resume

- **Searchlight**
 - Extension: randomized probing
 - Move the probe slot randomly
 - Each node randomly chooses a schedule for its probe slot that repeats every \((t^*t/2)\) slots
 - Schedules of two nodes appear random to each other

- **Advantage**
 - Retains the same worst-case bound
 - Improves average case performance

Discovery through probe-probe overlap
Asynchronous Periodic Resume

- **Challenges**
 - Reducing time spent awake
 - Reducing delay
 - No support for broadcast
 - None of the current approaches provide an interval where all nodes are awake