From Signals to Packets

Packet Transmission

Sender → Receiver

Packets

<table>
<thead>
<tr>
<th>Bit Stream</th>
<th>Digital Signal</th>
<th>Analog Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 0 1 1 1 1 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© CS 498wn Staff, University of Illinois Fall 2017
Basic Modulation Techniques

- Encode digital data in an analog signal
- Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
- Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
- Phase-shift keying (PSK)
 - Phase of carrier signal shifted
Amplitude-Shift Keying

- Binary digit (1)
 - Represented by presence of carrier, at constant amplitude
- Binary digit (0)
 - Represented by absence of carrier

\[s(t) = \begin{cases}
A \cos(2\pi f_c t) & \text{binary 1} \\
0 & \text{binary 0}
\end{cases} \]

- where the carrier signal is \(A \cos(2\pi f_c t) \)

- Inefficiencies
 - Sudden gain changes
 - Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber
Binary Frequency-Shift Keying (BFSK)

- Binary digits (0 and 1)
 - Represented by two different frequencies near the carrier frequency

\[
s(t) = \begin{cases}
A \cos(2\pi f_1 t) & \text{binary 1} \\
A \cos(2\pi f_2 t) & \text{binary 0}
\end{cases}
\]

- where \(f_1 \) and \(f_2 \) are offset from carrier frequency \(f_c \) by equal but opposite amounts
- Less susceptible to error than ASK
- Sometimes used for radio (3 to 30 MHz) or coax
- Demodulator looks for power around \(f_1 \) and \(f_2 \)
Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
 - More bandwidth efficient but more susceptible to error

\[s_i(t) = A \cos 2\pi f_i t \quad 1 \leq i \leq M \]

- \(f_i = f_c + (2i - 1 - M)f_d \)
- \(f_c \) = the carrier frequency
- \(f_d \) = the difference frequency
- \(M \) = number of different signal elements = \(2^L \)
- \(L \) = number of bits per signal element
Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
 - More bandwidth efficient but more susceptible to error
- Each symbol represents \(L \) bits
 - Symbol length is \(T_s = LT \) seconds, where \(T \) is the bit period
Phase-Shift Keying (PSK)

- **Two-level PSK (BPSK)**
 - Uses two phases to represent binary digits

\[
s(t) = \begin{cases}
A \cos(2\pi f_c t) & \text{binary 1} \\
A \cos(2\pi f_c t + \pi) & \text{binary 0}
\end{cases}
\]

\[
= \begin{cases}
A \cos(2\pi f_c t) & \text{binary 1} \\
-A \cos(2\pi f_c t) & \text{binary 0}
\end{cases}
\]
Phase-Shift Keying (PSK)

- **Differential PSK (DPSK)**
 - Phase shift with reference to previous bit
 - **Binary 0**
 - Signal of same phase as previous signal burst
 - **Binary 1**
 - Signal of opposite phase to previous signal burst

![Phase shift diagram](image)
Phase-Shift Keying (PSK)

- **Four-level PSK (QPSK)**
 - Each element represents more than one bit
 - Ex. Phase shift of multiples of 2π (90°)

\[
S(t) = \begin{cases}
A \cos \left(2\pi f_c t + \frac{\pi}{4} \right) & 11 \\
A \cos \left(2\pi f_c t + \frac{3\pi}{4} \right) & 01 \\
A \cos \left(2\pi f_c t - \frac{3\pi}{4} \right) & 00 \\
A \cos \left(2\pi f_c t - \frac{\pi}{4} \right) & 10
\end{cases}
\]
Phase-Shift Keying (PSK)

- **Multilevel PSK**
 - Each angle has more than one amplitude
 - Multiple signals elements

\[
D = \frac{R}{L} = \frac{R}{\log_2 M}
\]

- $D = \text{modulation rate, baud}$
- $R = \text{data rate, bps}$
- $M = \text{number of different signal elements} = 2^L$
- $L = \text{number of bits per signal element}$
Performance

- \(B_T \): Bandwidth of modulated signal
- \(R \): Bit rate
 - \(0 < r < 1 \); related to how signal is filtered

- ASK, PSK: \(B_T = (1+r)R \)
- FSK: \(B_T = 2DF + (1+r)R \)
 - \(DF = f_2 - f_c = f_c - f_1 \)
Performance

- B_T: Bandwidth of modulated signal
- R: Bit rate
 - $0 < r < 1$; related to how signal is filtered

- **MPSK**
 $$B_T = \left(\frac{1+r}{L} \right) R = \left(\frac{1+r}{\log_2 M} \right) R$$

- **MFSK**
 $$B_T = \left(\frac{(1+r)M}{\log_2 M} \right) R$$

- L: Number of bits encoded per signal element
- M: Number of different signal elements
Quadrature Amplitude Modulation (QAM)

- QAM uses two-dimensional signaling
 - ASK and PSK
 - A_k modulates in-phase $\cos(2\pi f_c t)$
 - B_k modulates quadrature phase $\sin(2\pi f_c t)$

$$s(t) = A_k(t)\cos 2\pi f_c t + B_k(t)\sin 2\pi f_c t$$
Signal Constellations

- Each pair \((A_k, B_k)\) defines a point in the plane
- Signal constellation set of signaling points

4 possible points per \(T\) sec.
2 bits / pulse

16 possible points per \(T\) sec.
4 bits / pulse
Other Signal Constellations

- Point selected by amplitude & phase

4 possible points per T sec.
16 possible points per T sec.
Adapting to Channel Conditions

- Channel conditions vary
 - Physical environment of the channel
 - Changes over time (slow and fast fading)
- Fixed coding/modulation scheme will often be inefficient
 - Too conservative for good channels
 - Too aggressive for bad channels
- Adjust coding/modulation based on channel conditions – “rate” adaptation
 - Controlled by the MAC protocol
 - E.g. 802.11a: BPSK – QPSK – 16-QAM – 64 QAM
Some Examples

- **Gaussian Frequency Shift Keying**
 - $1/-1$ is a positive/negative frequency shift from base
 - Gaussian filter is used to smooth pulses—reduces the spectral bandwidth—“pulse shaping”
 - Used in Bluetooth

- **Differential quadrature phase shift keying**
 - Variant of “regular” frequency shift keying
 - Symbols are encoded as changes in phase
 - Requires decoding on $\pi/4$ phase shift
 - Used in 802.11b networks

- **Quadrature Amplitude modulation**
 - Combines amplitude and phase modulation
 - Uses two amplitudes and 4 phases to represent the value of a 3 bit sequence