Announcements

• Dec 9, 7-9pm in DCL 1320 Midterm 2, not accumulative

• **Dec 16**, 7-11pm in Siebel 4240. Final project presentations and Open House for CS department

Audio for VR

Sound waves are similar to light except:

- Physics of sound

How the real world works

Physiology of the human ear
 Perception of sound

· Rendering of sound) Thow an engineered system can take the real world human to senses

Audio for VR: The Physics of Sound

Sound waves are similar to light except:

- Fluctuating air pressure (instead of EM/photons)
- Frequency is only 20Hz to 20000Hz (17 m to 17 mm, instead of 400-700nm wavelength)

Audio for VR: the Physics of Sound

Interaction with other media is similar to light:

Audio for VR: the Physics of Sound

Frequency spectrum, just like light:

Pure tone, like R, G or B

http://www.psypress.co.uk/mather/resources/swf/Demo4_1.swf

Frequency spectrum:

Audio for VR: the Physics of Sound

Complex wave: like mixed color (white)

http://www.psypress.co.uk/mather/resources/swf/Demo4_2.swf

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Perception of Sound

Steven's power law:

| P = c · m²|

- m magnitude of stimulus
- p perceived magnitude

For loudness at 3000Hz: x = 0.67

Perception of Sound

- Equal loudness perception (Fletcher & Munson, 1933):

- Loudness adaptation over time.
- Pitch perception: Frequency discrimination is remarkably good at low frequencies, but deteriorates at high frequencies.

Perception of Sound: Auditory Localization

Where is the sound coming from (similar to depth perception):

Minimum audible angle (MAA):

- ~ 1 degree 1000 Hz straight ahead
- ~ 5 degrees to the side terrible around 1500-1800Hz on side

Monaural cues:

- 1) pinna and external ear canal shape
- 2) intensity decreasing by inverse square law
- 3) spectrum of sounds (low frequency travels further)
- 4) direct vs reverberation energy with reflecting surfaces

Audio illusion:

Preference of main/first wave; suppression of later waves.

Perception of Sound: Auditory Localization

Where is the sound coming from (similar to depth perception):

Binaural cues:

- 1) ILD: Interaural Level Differences acoustic shadow
- 2) ITD: Interaural Time Difference arrival time, distance between ears

Sound Rendering

Four steps:

- 1. Modeling
- 2. Propagation
- 3. Rendering
- 4. Display

Modeling:

- Geometric models walls, obstacles
- Acoustic material properties absorption, reflection, refraction
- Sound sources point source, parallel wave source, loudness

Lower resolution than for graphics (only 1 pixel!)

Sound Rendering

Four steps:

- 1. Modeling
- 2. Propagation
- 3. Rendering
- 4. Display

Propagation:

- Reflection specular, scattering
- Absorption, diffraction, refraction
- Doppler effect, https://www.youtube.com/watch?v=h4OnBYrbCjY

Computational approaches:

- Numerical, solve PDEs for wave equations, accurate but expensive
- Combinatorial, similar to graphics ray tracing, fast, approximate