
Chapter 31

Shannon’s theorem
By Sariel Har-Peled, March 8, 2019¬ Version: 0.1

“This has been a novel about some people who were punished entirely too much for what they did. They
wanted to have a good time, but they were like children playing in the street; they could see one after
another of them being killed - run over, maimed, destroyed - but they continued to play anyhow. We really
all were very happy for a while, sitting around not toiling but just bullshitting and playing, but it was for
such a terrible brief time, and then the punishment was beyond belief; even when we could see it, we could
not believe it.”

– – A Scanner Darkly, Philip K. Dick.

31.1. Coding: Shannon’s Theorem
We are interested in the problem sending messages over a noisy channel. We will assume that the
channel noise is behave “nicely”.

Definition 31.1.1. The input to a binary symmetric channel with parameter p is a sequence of bits
x1, x2, . . . , and the output is a sequence of bits y1, y2, . . . , such that P[xi = yi] = 1 − p independently for
each i.

Translation: Every bit transmitted have the same probability to be flipped by the channel. The
question is how much information can we send on the channel with this level of noise. Naturally, a
channel would have some capacity constraints (say, at most 4,000 bits per second can be sent on the
channel), and the question is how to send the largest amount of information, so that the receiver can
recover the original information sent.

Now, its important to realize that handling noise is unavoidable in the real world. Furthermore,
there are tradeoffs between channel capacity and noise levels (i.e., we might be able to send considerably
more bits on the channel but the probability of flipping [i.e., p] might be much larger). In designing a
communication protocol over this channel, we need to figure out where is the optimal choice as far as
the amount of information sent.

Definition 31.1.2. A (k,n) encoding function Enc : {0,1}k → {0,1}n takes as input a sequence of k
bits and outputs a sequence of n bits. A (k,n) decoding function Dec : {0,1}n → {0,1}k takes as
input a sequence of n bits and outputs a sequence of k bits.

Thus, the sender would use the encoding function to send its message, and the receiver would use
the transmitted string (with the noise in it), to recover the original message. Thus, the sender starts
with a message with k bits, it blow it up to n bits, using the encoding function (to get some robustness

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
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to noise), it send it over the (noisy) channel to the receiver. The receiver takes the given (noisy) message
with n bits, and use the decoding function to recover the original k bits of the message.

Naturally, we would like k to be as large as possible (for a fixed n), so that we can send as much
information as possible on the channel.

The following celebrated result of Shannon­ in 1948 states exactly how much information can be
sent on such a channel.

Theorem 31.1.3 (Shannon’s theorem). For a binary symmetric channel with parameter p < 1/2
and for any constants δ, γ > 0, where n is sufficiently large, the following holds:

(i) For an k ≤ n(1−H(p)−δ) there exists (k,n) encoding and decoding functions such that the probability
the receiver fails to obtain the correct message is at most γ for every possible k-bit input messages.

(ii) There are no (k,n) encoding and decoding functions with k ≥ n(1−H(p)+δ) such that the probability
of decoding correctly is at least γ for a k-bit input message chosen uniformly at random.

31.1.0.1. Intuition behind Shanon’s theorem

Let assume the senders has sent a string S = s1s2 . . . sn. The receiver got a string T = t1t2 . . . tn,
where p = P[ti , si], for all i. In particular, let U be the Hamming distance between S and T ; that is,
U =

∑
i
[
si , ti

]
. Under our assumptions E[U] = pn, and U is a binomial variable. By Chernoff inequality,

we know that U ∈
[
(1 − δ)np, (1 + δ)np

]
with high probability, where δ is some tiny constant. So lets

assume this indeed happens. This means that T is in a ring R centered at S, with inner radius (1− δ)np
and outer radius (1 + δ)np. This ring has

(1+δ)np∑
i=(1−δ)np

(
n
i

)
≤ 2

(
n

(1 + δ)np

)
≤ α = 2 · 2nH((1+δ)p).

Let us pick as many rings as possible in the hypercube so that they are disjoint: R1, . . . ,Rκ. If somehow
magically, every word in the hypercube would be covered, then we could use all the possible 2n codewords,
then the number of rings κ we would pick would be at least

κ ≥
2n

|R|
≥

2n

2 · 2nH((1+δ)p) ≈ 2n(1−H((1+δ)p)).

In particular, consider all possible strings of length k such that 2k ≤ κ. We map the ith string in {0,1}k

to the center Ci of the ith ring Ri. Assuming that when we send Ci, the receiver gets a string in Ri,
then the decoding is easy - find the ring Ri containing the received string, take its center string Ci, and
output the original string it was mapped to. Now, observe that

k = blog κc = n(1 − H((1 + δ)p)) ≈ n(1 − H(p)),

as desired.

31.1.0.2. What is wrong with the above?

The problem is that we can not find such a large set of disjoint rings. The reason is that when you pack
rings (or balls) you are going to have wasted spaces around. To overcome this, we would allow rings to
overlap somewhat. That makes things considerably more involved. The details follow.

­Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician,
has been called “the father of information theory”.
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31.2. Proof of Shannon’s theorem
The proof is not hard, but requires some care, and we will break it into parts.

31.2.1. How to encode and decode efficiently
31.2.1.1. The scheme

Our scheme would be simple. Pick k ≤ n(1 − H(p) − δ). For any number i = 0, . . . , K̂ = 2k+1 − 1,
randomly generate a binary string Yi made out of n bits, each one chosen independently and uniformly.
Let Y0, . . . ,YK̂ denote these code words. Here, we have

K̂ = 2n(1−H(p)−δ).

For each of these codewords we will compute the probability that if we send this codeword, the
receiver would fail. Let X0, . . . ,XK , where K = 2k − 1, be the K codewords with the lowest probability
to fail. We assign these words to the 2k messages we need to encode in an arbitrary fashion.

The decoding of a message w is done by going over all the codewords, and finding all the codewords
that are in (Hamming) distance in the range [p(1 − ε)n, p(1 + ε)n] from w. If there is only a single word
Xi with this property, we return i as the decoded word. Otherwise, if there are no such words or there
is more than one word, the decoder stops and report an error.

31.2.1.2. The proof

Intuition. Let Si be all the binary strings (of length n) such that if the receiver gets this word, it
would decipher it to be i (here are still using the extended codeword Y0, . . . ,YK̂). Note, that if we remove
some codewords from consideration, the set Si just increases in size. Let Wi be the probability that Xi
was sent, but it was not deciphered correctly. Formally, let r denote the received word. We have that

Wi =
∑
r<Si

P[r received when Xi was sent].

To bound this quantity, let ∆(x, y) denote the Hamming distance between the binary strings x and y.
Clearly, if x was sent the probability that y was received is

w(x, y) = p∆(x,y)(1 − p)n−∆(x,y).

As such, we have
P[r received when Xi was sent] = w(Xi,r).

Let Si,r be an indicator variable which is 1 if r < Si. We have that

Wi =
∑
r<Si

P[r received when Xi was sent] =
∑
r<Si

w(Xi,r) =
∑

r

Si,rw(Xi,r).

The value of Wi is a random variable of our choice of Y0, . . . ,YK̂ . As such, its natural to ask what is
the expected value of Wi.

Consider the ring
R(r) =

{
x
��� (1 − ε)np ≤ ∆(x,r) ≤ (1 + ε)np

}
,

where ε > 0 is a small enough constant. Suppose, that the code word Yi was sent, and r was received.
The decoder return i if Yi is the only codeword that falls inside R(r).
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Lemma 31.2.1. Given that Yi was sent, and r was received and furthermore r ∈ R(Yi), then the proba-
bility of the decoder failing, is

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤
γ

8 ,

where γ is the parameter of Theorem 31.1.3.

Proof: The decoder fails here, only if R(r) contains some other codeword Yj ( j , i) in it. As such,

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤ P

[
Yj ∈ R(r), for any j , i

]
≤
∑
j,i
P
[
Yj ∈ R(r)

]
.

Now, we remind the reader that the Yjs are generated by picking each bit randomly and independently,
with probability 1/2. As such, we have

P
[
Yj ∈ R(r)

]
=

(1+ε)np∑
m=(1−ε)np

( n
m

)
2n ≤

n
2n

(
n

b(1 + ε)npc

)
,

since (1+ ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation
is the largest. By Corollary 31.3.2 (i), we have

P
[
Yj ∈ R(r)

]
≤

n
2n

(
n

b(1 + ε)npc

)
≤

n
2n 2nH((1+ε)p) = n2n(H((1+ε)p)−1).

As such, we have

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤
∑
j,i
P
[
Yj ∈ R(r)

]
≤ K̂ P[Y1 ∈ R(r)] ≤ 2k+1n2n(H((1+ε)p)−1)

≤ n2n(1−H(p)−δ)+1n2n(H((1+ε)p)−1) ≤ n2n
(
H((1+ε)p)−H(p)−δ

)
+1

since k ≤ n(1 − H(p) − δ). Now, we choose ε to be a small enough constant, so that the quantity
H((1 + ε)p) − H(p) − δ is equal to some (absolute) negative (constant), say −β, where β > 0. Then,
τ ≤ n2−βn+1, and choosing n large enough, we can make τ smaller than γ/2, as desired. As such, we just
proved that

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤
γ

2 .

Lemma 31.2.2. We have, that
∑

r<R(Yi) w(Yi,r) ≤ γ/8, where γ is the parameter of Theorem 31.1.3.

Proof: This quantity, is the probability of sending Yi when every bit is flipped with probability p, and
receiving a string r such that more than εpn bits where flipped. But this quantity can be bounded using
the Chernoff inequality. Let Z = ∆(Yi,r), and observe that E[Z] = pn, and it is the sum of n independent
indicator variables. As such∑

r<R(Yi)

w(Yi,r) = P[|Z − E[Z]| > εpn] ≤ 2 exp
(
−
ε2

4 pn
)
<
γ

4 ,

since ε is a constant, and for n sufficiently large.
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Lemma 31.2.3. For any i, we have µ = E[Wi] ≤ γ/4, where γ is the parameter of Theorem 31.1.3.

Proof: By linearity of expectations, we have

µ = E[Wi] = E

[∑
r

Si,rw(Yi,r)

]
=
∑

r
E
[
Si,rw(Yi,r)

]
=
∑

r
E
[
Si,r

]
w(Yi,r) =

∑
r
P[x < Si]w(Yi,r),

since Si,r is an indicator variable. Setting, τ = P
[
r < Si

��� r ∈ R(Yi)

]
and since

∑
r w(Yi,r) = 1, we get

µ =
∑

r∈R(Yi)

P[x < Si]w(Yi,r) +
∑

r<R(Yi)

P[x < Si]w(Yi,r)

=
∑

r∈R(Yi)

P
[
x < Si

��� r ∈ R(Yi)

]
w(Yi,r) +

∑
r<R(Yi)

P[x < Si]w(Yi,r)

≤
∑

r∈R(Yi)

τ · w(Yi,r) +
∑

r<R(Yi)

w(Yi,r) ≤ τ +
∑

r<R(Yi)

w(Yi,r) ≤
γ

4 +
γ

4 =
γ

2 .

Now, the receiver got r (when we sent Yi), and it would miss encode it only if (i) r is outside of R(Yi),
or R(r) contains some other codeword Yj ( j , i) in it. As such,

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤ P

[
Yj ∈ R(r), for any j , i

]
≤
∑
j,i
P
[
Yj ∈ R(r)

]
.

Now, we remind the reader that the Yjs are generated by picking each bit randomly and independently,
with probability 1/2. As such, we have

P
[
Yj ∈ R(r)

]
=

(1+ε)np∑
m=(1−ε)np

( n
m

)
2n ≤

n
2n

(
n

b(1 + ε)npc

)
,

since (1+ ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation
is the largest. By Corollary 31.3.2 (i), we have

P
[
Yj ∈ R(r)

]
≤

n
2n

(
n

b(1 + ε)npc

)
≤

n
2n 2nH((1+ε)p) = n2n(H((1+ε)p)−1).

As such, we have

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤
∑
j,i
P
[
Yj ∈ R(r)

]
. ≤ K̂ P[Y1 ∈ R(r)] ≤ 2k+1n2n(H((1+ε)p)−1)

≤ n2n(1−H(p)−δ)+1+n(H((1+ε)p)−1) ≤ n2n
(
H((1+ε)p)−H(p)−δ

)
+1

since k ≤ n(1 − H(p) − δ). Now, we choose ε to be a small enough constant, so that the quantity
H((1 + ε)p) − H(p) − δ is negative (constant). Then, choosing n large enough, we can make τ smaller
than γ/2, as desired. As such, we just proved that

τ = P
[
r < Si

��� r ∈ R(Yi)

]
≤
γ

2 .
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In the following, we need the following trivial (but surprisingly deep) observation.

Observation 31.2.4. For a random variable X, if E[X] ≤ ψ, then there exists an event in the probability
space, that assigns X a value ≤ µ.

This holds, since E[X] is just the average of X over the probability space. As such, there must be an
event in the universe where the value of X does not exceed its average value.

The above observation is one of the main tools in a powerful technique to proving various claims in
mathematics, known as the probabilistic method.

Lemma 31.2.5. For the codewords X0, . . . ,XK , the probability of failure in recovering them when sending
them over the noisy channel is at most γ.

Proof: We just proved that when using Y0, . . . ,YK̂ , the expected probability of failure when sending Yi,
is E[Wi] ≤ γ2, where K̂ = 2k+1 − 1. As such, the expected total probability of failure is

E


K̂∑

i=0
Wi

 =
K̂∑

i=0
E[Wi] ≤

γ

2 2k+1 = γ2k,

by Lemma 31.2.3 (here we are using the facts that all the random variables we have are symmetric and
behave in the same way). As such, by Observation 31.2.4, there exist a choice of Yis, such that

K̂∑
i=0

Wi ≤ 2kγ.

Now, we use a similar argument used in proving Markov’s inequality. Indeed, the Wi are always positive,
and it can not be that 2k of them have value larger than γ, because in the summation, we will get that

K̂∑
i=0

Wi > 2kγ.

Which is a contradiction. As such, there are 2k codewords with failure probability smaller than γ. We
set our 2k codeword to be these words. Since we picked only a subset of the codewords for our code,
the probability of failure for each codeword shrinks, and is at most γ.

Lemma 31.2.5 concludes the proof of the constructive part of Shannon’s theorem.

31.2.2. Lower bound on the message size
We omit the proof of this part.
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31.3. From previous lectures

Lemma 31.3.1. Suppose that nq is integer in the range [0,n]. Then 2nH(q)

n + 1 ≤

(
n

nq

)
≤ 2nH(q).

Lemma 31.3.1 can be extended to handle non-integer values of q. This is straightforward, and we
omit the easy details.

Corollary 31.3.2. We have:
(i) q ∈ [0,1/2] ⇒

( n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2,1]

( n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2,1] ⇒ 2nH(q)
n+1 ≤

( n
bnqc

)
. (iv) q ∈ [0,1/2] ⇒ 2nH(q)

n+1 ≤
( n
dnqe

)
.

Theorem 31.3.3. Suppose that the value of a random variable X is chosen uniformly at random from
the integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average at least
blg mc − 1 = bH(X)c − 1 independent and unbiased bits.

31.4. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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