

CS498 MP Logic in Computer Science Spring 2017

Madhusudan Parthasarathy (Madhu)

Lectures: Tue / Thu 9:30am-10:45pm (1304 Siebel)

Website: http://courses.engr.illinois.edu/cs498mp3/

Newsgroup(piazza):

Prerequisites:

Mathematical maturity; some discrete math (CS173) and theory of computation (CS373) background.

Come talk to me if you don't have this background.

What's logic?

- Logic is the study of the principles of valid inference and demonstration.
- Logic is the study of the structure of arguments.
- Study of formal inference.
- Logic: Syntax + Semantics + Inference (form) (meaning) (reasoning)
- "Contrariwise," ... "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."
 - Tweedledum Through the Looking Glass, Lewis Carroll

Aims of this course

- Primary aims:
 - Mathematical and logical maturity
 - Formal reasoning and formal arguments
 - Logic as a foundational aspect of computer science

Aims of this course

- Secondary aims (!):
 - Fundamentals of mathematical logic
 - Propositional logic and predicate logic
 - Model theory and proof theory
 - Sound and complete proof systems
 - Gödel's completeness and incompleteness theorems (not nec proofs)
 - Logic and computability
 - Computability ~ Proofs
 - Finite model theory (computational complexity using logic)
 - Decidable theories
 - Quantifier elimination
 - Decidability using the finite-model property
 - Decidability using automata theory
 - Decidability using interpretations
 - Exploiting structure of the graphs/structures to decide logics on them

- Beginnings
 - Aristotle (~300 B CE)
 - Earliest formal study of logic
 - Rhetoric, syllogism, philosophy, geometry
 - Furthered by Islamic logicians
 - Logic in India
 - Nyaya and Vaisheshika (2 CE)
 - Ontology; obtaining valid knowledge
 - Logic in China
 - Mozi school (~400 B CE)

- Syllogism
 - Every man is mortal
 - Socrates is a man
 - Conclude: Socrates is mortal

- "man", "mortal", "Socrates" not important
 - Every M is D
 - S is an M
 - Conclude: S is D

Forall x. $M(x) \rightarrow D(x)$ M(S)

So, D(S).

- The algebraic school
 - George Boole and others (end of 19th century)
 - Algebraic structure of formulas; Boolean algebra

- Frege developed an elaborate formal language
 Quantifiers, "predicate calculus", number-theory -> logic
- Russel's paradox
- Principia Mathematica (Russel-Whitehead)(1910-1913)

- The mathematical school (early 20th century)
 - Dedekind, Peano, Hilbert, Heyton, Zermelo, Tarski
 - Axiomatize branches of math (geometry, arithmetic, set-theory)
 - Zermelo: Axiomatization of set-theory
 - The Hilbert program: formalization of all of mathematics in axiomatic form, with a proof of consistency using "finitary" methods.
 - Godel's theorems:
 - PhD: Every FO sentence can be deduced in common deductive systems.
 Godel's completeness theorem
 - Any axiomatization that includes arithmetic must either be unsound or incomplete (i.e. there is a sentence neither provable nor disprovable)
 Godel's incompleteness theorem.

- The mathematical school (20th century)
 - Tarski: Logician extraoradinaire (~ 2500 papers!)
 - Completeness, truth, definability, decidability
 - Alonzo Church, and students Kleene and Henkin
 - Church's thesis of computability
 - First-order logic is undecidable

Post WW-II

- model theory
 - Study of mathematical structures (groups, etc.) using logic
- proof theory
 - Study of axiom systems, inference systems, proofs
- computability theory
 - Relationship of logic to computability/complexity
- set theory
 - foundations of mathematics, axiomatic set theory
 - Cohen: independence of continuum hypo and independence of axiom of choice from ZF axioms.
 - constructivism
- applications of logic in computer science
 - applied logic to AI, databases, verification, aided by tools like automated and semi-automated theorem provers

Logic and computability

- Turing's machines (1941):
 - Formal mechanical notion of computation using "finite" means
 - Church-Turing thesis:
 - All computable languages are Turing-machine computable
 - Gödel's incompleteness result is about non-existence of proofs using diagonalization:
 - A proof system is only a particular form of computation!
 - Existence of a sound and complete proof system shows a theory is recursively enumerable (computed by TM that may not halt on all inputs)
 - A deep connection between logic and computability

Logic and computational complexity

- Fundamental idea (Fagin): Descriptive complexity
 - An algorithmic problem can be logically described.
 - The logic used determines the computational complexity of the problem!
 - Eg. Existential SO ~ NPLeast-fix-point over ordered structures ~ P
 - Field: Finite model theory

Logic in Computer Science

Unusual (and unreasonable!) effectiveness in computer science.

- Computability and proofs
- Computational complexity and descriptive complexity
- Semantics of programming languages (types, type inference, domains and fixpoints, linear logic, etc.)
- AI: automatic reasoning, theorem provers (CoQ, PVS).
- Specifications for hardware systems (decidable temporal logics LTL/CTL)
- Logics to prove programs correct (Hoare-logic, pre-post conditions)
 - Huge impact in verifying systems
 - Modern software validation tools rely on decidable logics for abstraction and verification
 - Large number of decidable theories; combining decidable theories; automatic theorem provers (eg. Z3 from MSR).
- Proof-carrying code
- Database theory: Queries are simply formulas! SQL ~ FOL
- Logic Programming

Unusual effectiveness of logic in CS

• E.P. Wigner's Nobel prize talk, 1963:

"On the Unreasonable Effectiveness of Mathematics in the Natural Sciences"

"The book of nature is written in the language of mathematics"

(attributed to Galileo).

- On the Unusual Effectiveness of Logic in Computer Science
 - Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu

Logic in Computer Science: Themes

Theme 1. Classical propositional and predicate logic.

(proof systems, axioms, soundness, completeness, compactness, Gödel's theorems)

Theme 2. Decidable logics.

(QE for reals, finite-model property, decidability of MSO on words and trees using automata, decidability of Presburger arithmetic, interpretations, combining decision procedures, SAT/SMT solvers, tools for logic)

Theme 3. Finite model theory.

(descriptive complexity, computational complexity, characterizing complexity classes using logic)

Theme 4. Other logics

Higher-order logics, modal and temporal logics, logics for querying (databases), relational logics, etc.

Administrivia

- What's "trivia"?
 - Greek education system had "trivium" (three ways):
 - Grammar (mechanics of language)
 - Logic (mechanics of thought and analysis)
 - Rhetoric (mechanics of persuasion)

followed by the "quadrivium":

arithmetic, geometry, music, and astronomy

Administrivia

Textbooks: None

(No text covers all the topics we cover)

The following can be useful, however:

- Enderton: A Mathematical Introduction to Logic
- Melvin Fitting: First-order logic and Automated Theorem Proving
 - 1 copy in Engg lib; placed on reserve
- Calculus of Computation: Bradley and Manna
- Borger, Gradel, Gurevich: The Classical Decision Problem
- More resources (book chapters, papers, notes) will be handed out in class and made available online on the course page.
- Lecture notes (handwritten) will be posted online too.
 But do not rely on me posting them!

Administrivia

- Homework
 - Roughly one homework set every two/three weeks
- Office hours:
 - To be decided.

Logistics

- Course website: + Piazza newsgroup
- TA: not clear we will have one.
- HWs (about once in two/three weeks, on avg; more in the beginning; less near the end; ~ 5 sets)
- Grades will depend on homework and final exam

HW: 30

Attendance in class: 5

Midterm exam: 25

Final exam: 40

The ratio can change mildly mid semester. But I will keep you informed.

 3 credits: HW + Midterm + Attendance + Final Curved (undergrads may be curved separately)

Homework sets

- First two homeworks must be handed in individually.
- Rest of the homework sets can be in groups of two
 - You can work on problems in a group of two
 - But you must submit homework write-ups individually, written by yourself.
 - Indicate clearly who you worked with.
 - If you see solutions online/internet/book/whatever, you need to *cite* this clearly. And the solution should be written in your own words.
 - Copied solutions = plagiarism/cheating.

Course resources

- No textbook; online handouts

 (accessible from UIUC net domain)
 Closest "textbook": Calculus of Computation by Bradley and Manna
- Software: Many; need access to a MS Windows machine
- See course website for info:

http://www.cs.uiuc.edu/classs/cs477

- Enroll in newsgroup at Piazza.
 - Link announced later.
- Teaching Assistant: (probably)Shambwaditya Saha

Questions?

Exams

Next class

Propositional logic