
Algorithms Lecture 19: Depth-First Search [Sp’15]

Ts’ui Pe must have said once: I am withdrawing to write a book.
And another time: I am withdrawing to construct a labyrinth.
Every one imagined two works;
to no one did it occur that the book and the maze were one and the same thing.

— Jorge Luis Borges, “El jardín de senderos que se bifurcan” (1942)
English translation (“The Garden of Forking Paths”) by Donald A. Yates (1958)

“Com’è bello il mondo e come sono brutti i labirinti!” dissi sollevato.
“Come sarebbe bello il mondo se ci fosse una regola per girare nei labirinti,”
rispose il mio maestro.

[“How beautiful the world is, and how ugly labyrinths are,” I said, relieved.
“How beautiful the world would be if there were a procedure for moving through labyrinths,”
my master replied.]

— Umberto Eco, Il nome della rosa (1980)
English translation (The Name of the Rose) by William Weaver (1983)

At some point, the learning stops and the pain begins.

— Rao Kosaraju

19 Depth-First Search

Recall from the previous lecture the recursive formulation of depth-first search in undirected
graphs.

DFS(v):
if v is unmarked

mark v
for each edge vw

DFS(w)

We can make this algorithm slightly faster (in practice) by checking whether a node is marked
before we recursively explore it. This modification ensures that we call DFS(v) only once for
each vertex v. We can further modify the algorithm to define parent pointers and other useful
information about the vertices. This additional information is computed by two black-box
subroutines PreVisit and PostVisit, which we leave unspecified for now.

DFS(v):
mark v
PreVisit(v)
for each edge vw

if w is unmarked
parent(w )← v
DFS(w)

PostVisit(v)

We can search any connected graph by unmarking all vertices and then calling DFS(s) for an
arbitrary start vertex s. As we argued in the previous lecture, the subgraph of all parent edges
v�parent(v) defines a spanning tree of the graph, which we consider to be rooted at the start
vertex s.
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Lemma 1. Let T be a depth-first spanning tree of a connected undirected graph G, computed by
calling DFS(s). For any node v, the vertices that are marked during the execution of DFS(v) are the
proper descendants of v in T .

Proof: T is also the recursion tree for DFS(s). �

Lemma 2. Let T be a depth-first spanning tree of a connected undirected graph G. For every edge
vw in G, either v is an ancestor of w in T , or v is a descendant of w in T .

Proof: Assume without loss of generality that v is marked before w. Then w is unmarked when
DFS(v) is invoked, but marked when DFS(v) returns, so the previous lemma implies that w is a
proper descendant of v in T . �

Lemma 2 implies that any depth-first spanning tree T divides the edges of G into two classes:
tree edges, which appear in T , and back edges, which connect some node in T to one of its
ancestors.

19.1 Counting and Labeling Components

For graphs that might be disconnected, we can compute a depth-first spanning forest by calling
the following wrapper function; again, we introduce a generic black-box subroutine Preprocess
to perform any necessary preprocessing for the PostVisit and PostVisit functions.

DFSAll(G):
Preprocess(G)
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

With very little additional effort, we can count the components of a graph; we simply
increment a counter inside the wrapper function. Moreover, we can also record which component
contains each vertex in the graph by passing this counter to DFS. The single line comp(v)← count
is a trivial example of PreVisit. (And the absence of code after the for loop is a vacuous example
of PostVisit.)

CountAndLabel(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
LabelComponent(v, count)

return count

LabelComponent(v, count):
mark v
comp(v)← count
for each edge vw

if w is unmarked
LabelComponent(w, count)

It should be emphasized that depth-first search is not specifically required here; any other
instantiation of our earlier generic traversal algorithm (“whatever-first search”) can be used to
count components in the same asymptotic running time. However, most of the other algorithms
we consider in this note do specifically require depth-first search.
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19.2 Preorder and Postorder Labeling

You should already be familiar with preorder and postorder traversals of rooted trees, both of
which can be computed using from depth-first search. Similar traversal orders can be defined for
arbitrary graphs by passing around a counter as follows:

PrePostLabel(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← LabelComponent(v, clock)

LabelComponent(v, clock):
mark v
pre(v)← clock
clock← clock+ 1
for each edge vw

if w is unmarked
clock← LabelComponent(w, clock)

post(v)← clock
clock← clock+ 1
return clock

Equivalently, if we’re willing to use (shudder) global variables, we can use our generic depth-
first-search algorithm with the following subroutines Preprocess, PreVisit, and PostVisit.

Preprocess(G):
clock← 0

PreVisit(v):
pre(v)← clock
clock← clock+ 1

PostVisit(v):
post(v)← clock
clock← clock+ 1

Consider two vertices u and v, where u is marked after v. Then we must have pre(u)< pre(v).
Moreover, Lemma 1 implies that if v is a descendant of u, then post(u)> post(v), and otherwise,
pre(v) > post(u). Thus, for any two vertices u and v, the intervals [pre(u),post(u)] and
[pre(v),post(v)] are either disjoint or nested; in particular, if uv is an edge, Lemma 2 implies that
the intervals must be nested.

19.3 Directed Graphs and Reachability

The recursive algorithm requires only one minor change to handle directed graphs:

DFSAll(G):
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

DFS(v):
mark v
PreVisit(v)
for each edge v�w

if w is unmarked
DFS(w)

PostVisit(v)

However, we can no longer use this modified algorithm to count components. Suppose G is a
single directed path. Depending on the order that we choose to visit the nodes in DFSAll, we
may discover any number of “components” between 1 and n. All that we can guarantee is that
the “component” numbers computed by DFSAll do not increase as we traverse the path. In fact,
the real problem is that the definition of “component” is only suitable for undirected graphs.

Instead, for directed graphs we rely on a more subtle notion of reachability. We say that
a node v is reachable from another node u in a directed graph G—or more simply, that u can
reach v—if and only if there is a directed path in G from u to v. Let Reach(u) denote the set of
vertices that are reachable from u (including u itself). A simple inductive argument proves that
Reach(u) is precisely the subset of nodes that are marked by calling DFS(u).
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19.4 Directed Acyclic Graphs

A directed acyclic graph or dag is a directed graph with no directed cycles. Any vertex in a dag
that has no incoming vertices is called a source; any vertex with no outgoing edges is called a
sink. Every dag has at least one source and one sink (Do you see why?), but may have more than
one of each. For example, in the graph with n vertices but no edges, every vertex is a source and
every vertex is a sink.

We can check whether a given directed graph G is a dag in O(V + E) time as follows. First, to
simplify the algorithm, we add a single artificial source s, with edges from s to every other vertex.
Let G + s denote the resulting augmented graph. Because s has no outgoing edges, no directed
cycle in G + s goes through s, which implies that G + s is a dag if and only if G is a dag. Then we
preform a depth-first search of G + s starting at the new source vertex s; by construction every
other vertex is reachable from s, so this search visits every node in the graph.

Instead of vertices being merely marked or unmarked, each vertex has one of three statuses—
New, Active, or Done—which depend on whether we have started or finished the recursive
depth-first search at that vertex. (Since this algorithm never uses parent pointers, I’ve removed
the line “parent(w)← v”.)

IsAcyclic(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

return IsAcyclicDFS(s)

IsAcyclicDFS(v):
status(v)← Active
for each edge v�w

if status(w) = Active
return False

else if status(w) = New
if IsAcyclicDFS(w) = False

return False
status(v)← Done
return True

Suppose the algorithm returns False. Then the algorithm must discover an edge v�w such
that status(w) = Active. The active vertices are precisely the vertices currently on the recursion
stack, which are all ancestors of the current vertex v. Thus, there is a directed path from w to v,
and so the graph has a directed cycle.

On the other hand, suppose G has a directed cycle. Let w be the first vertex in this cycle that
we visit, and let v�w be the edge leading into v in the same cycle. Because there is a directed
path from w to v, we must call IsAcyclicDFS(v) during the execution of IsAcyclicDFS(w), unless
we discover some other cycle first. During the execution of IsAcyclicDFS(v), we consider the
edge v�w, discover that status(w) = Active. The return value False bubbles up through all the
recursive calls to the top level.

We conclude that IsAcyclic(G) returns True if and only if G is a dag.

19.5 Topological Sort

A topological ordering of a directed graph G is a total order ≺ on the vertices such that u≺ v
for every edge u�v. Less formally, a topological ordering arranges the vertices along a horizontal
line so that all edges point from left to right. A topological ordering is clearly impossible if the
graph G has a directed cycle—the rightmost vertex of the cycle would have an edge pointing to
the left! On the other hand, every dag has a topological order, which can be computed by either
of the following algorithms.
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TopologicalSort(G) :
n← |V |
for i← 1 to n

v← any source in G
S[i]← v
delete v and all edges leaving v

return S[1 .. n]

TopologicalSort(G) :
n← |V |
for i← n down to 1

v← any sink in G
S[1]← v
delete v and all edges entering v

return S[1 .. n]

The correctness of these algorithms follow inductively from the observation that deleting a
vertex cannot create a cycle.

This simple algorithm has two major disadvantages. First, the algorithm actually destroys the
input graph. This destruction can be avoided by simply marking the “deleted” vertices, instead
of actually deleting them, and defining a vertex to be a source (sink) if none of its incoming
(outgoing) edges come from (lead to) an unmarked vertex. The more serious problem is that
finding a source vertex seems to require Θ(V ) time in the worst case, which makes the running
time of this algorithm Θ(V 2). In fact, a careful implementation of this algorithm computes a
topological ordering in O(V + E) time without removing any edges.

But there is a simpler linear-time algorithm based on our earlier algorithm for deciding
whether a directed graph is acyclic. The new algorithm is based on the following observation:

Lemma 3. For any directed acyclic graph G, the first vertex marked Done by IsAcyclic(G) must be
a sink.

Proof: Let v be the first vertex marked Done during an execution of IsAcyclic. For the sake of
argument, suppose v has an outgoing edge v�w. When IsAcyclicDFS first considers the edge
v�w, there are three cases to consider.

• If status(w) = Done, then w is marked Done before v, which contradicts the definition of
v.

• If status(w) = New, the algorithm calls TopoSortDFS(w), which (among other computa-
tion) marks w Done. Thus, w is marked Done before v, which contradicts the definition of
v.

• If status(w) = Active, then G has a directed cycle, contradicting our assumption that G is
acyclic.

In all three cases, we have a contradiction, so v must be a sink. �

Thus, to topologically sort a dag G, it suffice to list the vertices in the reverse order of being
marked Done. For example, we could push each vertex onto a stack when we mark it Done, and
then pop every vertex off the stack.

TopologicalSort(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

TopoSortDFS(s)

for i ← 1 to V
S[i]← Pop

return S[1 .. V]

TopoSortDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessBackwardDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Push(v)
return True
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But maintaining a separate data structure is actually overkill. In most applications of
topological sort, an explicit sorted list of the vertices is not our actual goal; instead, we want to
performing some fixed computation at each vertex of the graph, either in topological order or
in reverse topological order. In this case, it is not necessary to record the topological order. To
process the graph in reverse topological order, we can just process each vertex at the end of its
recursive depth-first search.

ProcessBackward(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

ProcessBackwardDFS(s)

ProcessBackwardDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessBackwardDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Process(v)

If we already know that the input graph is acyclic, we can simplify the algorithm by simply
marking vertices instead of labeling them Active or Done.

ProcessDagBackward(G):
add vertex s
for all vertices v 6= s

add edge s�v
unmark v

ProcessDagBackwardDFS(s)

ProcessDagBackwardDFS(v):
mark v
for each edge v�w

if w is unmarked
ProcessDagBackwardDFS(w)

Process(v)

Except for the addition of the artificial source vertex s, which we need to ensure that every vertex
is visited, this is just the standard depth-first search algorithm, with PostVisit renamed to
Process!

The simplest way to process a dag in forward topological order is to construct the reversal of
the input graph, which is obtained by replacing each each v�w with its reversal w�v. Reversing
a directed cycle gives us another directed cycle with the opposite orientation, so the reversal
of a dag is another dag. Every source in G becomes a sink in the reversal of G and vice versa;
it follows inductively that every topological ordering for the reversal of G is the reversal of a
topological ordering of G. The reversal of any directed graph can be computed in O(V + E) time;
the details of this construction are left as an easy exercise.

19.6 Every Dynamic Programming Algorithm?

Our topological sort algorithm is arguably the model fora wide class of dynamic programming
algorithms. Recall that the dependency graph of a recurrence has a vertex for every recursive
subproblem and an edge from one subproblem to another if evaluating the first subproblem
requires a recursive evaluation of the second. The dependency graph must be acyclic, or the
naïve recursive algorithm would never halt. Evaluating any recurrence with memoization is
exactly the same as performing a depth-first search of the dependency graph. In particular, a
vertex of the dependency graph is ‘marked’ if the value of the corresponding subproblem has
already been computed, and the black-box subroutine Process is a placeholder for the actual
value computation.

However, there are some minor differences between most dynamic programming algorithms
and topological sort.
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• First, in most dynamic programming algorithms, the dependency graph is implicit—the
nodes and edges are not given as part of the input. But this difference really is minor; as
long as we can enumerate recursive subproblems in constant time each, we can traverse
the dependency graph exactly as if it were explicitly stored in an adjacency list.

• More significantly, most dynamic programming recurrences have highly structured depen-
dency graphs. For example, the dependency graph for edit distance is a regular grid with
diagonals, and the dependency graph for optimal binary search trees is an upper triangular
grid with all possible rightward and upward edges. This regular structure lets us hard-wire
a topological order directly into the algorithm, so we don’t have to compute it at run time.

Conversely, we can use depth-first search to build dynamic programming algorithms for
problems with less structured dependency graphs. For example, consider the longest path
problem, which asks for the path of maximum total weight from one node s to another node t
in a directed graph G with weighted edges. The longest path problem is NP-hard in general
directed graphs, by an easy reduction from the traveling salesman problem, but it is easy to solve
in linear time if the input graph G is acyclic, as follows. For any node s, let LLP(s, t) denote the
Length of the Longest Path in G from s to t. If G is a dag, this function satisfies the recurrence

LLP(s, t) =

¨

0 if s = t,

maxs�v (`(s�v) + LLP(v, t)) otherwise,

where `(v�w) is the given weight (“length”) of edge v�w. In particular, if s is a sink but not
equal to t, then LLP(s, t) =∞. The dependency graph for this recurrence is the input graph G
itself: subproblem LLP(u, t) depends on subproblem LLP(v, t) if and only if u�v is an edge in
G. Thus, we can evaluate this recursive function in O(V + E) time by performing a depth-first
search of G, starting at s.

LongestPath(s, t):
if s = t

return 0

if LLP(s) is undefined
LLP(s)←∞
for each edge s�v

LLP(s)←max {LLP(v), `(s�v) + LongestPath(v, t)}
return LLP(s)

A surprisingly large number of dynamic programming problems (but not all) can be recast as
optimal path problems in the associated dependency graph.

19.7 Strong Connectivity

Let’s go back to the proper definition of connectivity in directed graphs. Recall that one vertex u
can reach another vertex v in a graph G if there is a directed path in G from u to v, and that
Reach(u) denotes the set of all vertices that u can reach. Two vertices u and v are strongly
connected if u can reach v and v can reach u. Tedious definition-chasing implies that strong
connectivity is an equivalence relation over the set of vertices of any directed graph, just as
connectivity is for undirected graphs. The equivalence classes of this relation are called the
strongly connected components (or more simply, the strong components) of G. If G has a single
strong component, we call it strongly connected. G is a directed acyclic graph if and only if
every strong component of G is a single vertex.
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It is straightforward to compute the strong component containing a single vertex v in O(V+E)
time. First we compute Reach(v) by calling DFS(v). Then we compute Reach−1(v) = {u | v ∈
Reach(u)} by searching the reversal of G. Finally, the strong component of v is the intersection
Reach(v) ∩ Reach−1(v). In particular, we can determine whether the entire graph is strongly
connected in O(V + E) time.

We can compute all the strong components in a directed graph by wrapping the single-strong-
component algorithm in a wrapper function, just as we did for depth-first search in undirected
graphs. However, the resulting algorithm runs in O(V E) time; there are at most V strong
components, and each requires O(E) time to discover. Surely we can do better! After all, we only
need O(V + E) time to decide whether every strong component is a single vertex.

19.8 Strong Components in Linear Time

For any directed graph G, the strong component graph scc(G) is another directed graph obtained
by contracting each strong component of G to a single (meta-)vertex and collapsing parallel
edges. The strong component graph is sometimes also called the meta-graph or condensation of
G. It’s not hard to prove (hint, hint) that scc(G) is always a dag. Thus, in principle, it is possible
to topologically order the strong components of G; that is, the vertices can be ordered so that
every backward edge joins two edges in the same strong component.

Let C be any strong component of G that is a sink in scc(G); we call C a sink component.
Every vertex in C can reach every other vertex in C , so a depth-first search from any vertex in C
visits every vertex in C . On the other hand, because C is a sink component, there is no edge
from C to any other strong component, so a depth-first search starting in C visits only vertices in
C . So if we can compute all the strong components as follows:

StrongComponents(G):
count← 0
while G is non-empty

count← count+ 1
v← any vertex in a sink component of G
C ← OneComponent(v, count)
remove C and incoming edges from G

At first glance, finding a vertex in a sink component quickly seems quite hard. However, we
can quickly find a vertex in a source component using the standard depth-first search. A source
component is a strong component of G that corresponds to a source in scc(G). Specifically, we
compute finishing times (otherwise known as post-order labeling) for the vertices of G as follows.

DFSAll(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← DFS(v, clock)

DFS(v, clock):
mark v
for each edge v�w

if w is unmarked
clock← DFS(w, clock)

clock← clock+ 1
finish(v)← clock
return clock

Lemma 4. The vertex with largest finishing time lies in a source component of G.

Proof: Let v be the vertex with largest finishing time. Then DFS(v, clock) must be the last direct
call to DFS made by the wrapper algorithm DFSAll.
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Let C be the strong component of G that contains v. For the sake of argument, suppose there
is an edge x�y such that x 6∈ C and y ∈ C . Because v and y are strongly connected, y can
reach v, and therefore x can reach v. There are two cases to consider.

• If x is already marked when DFS(v) begins, then v must have been marked during the
execution of DFS(x), because x can reach v. But then v was already marked when DFS(v)
was called, which is impossible.

• If x is not marked when DFS(v) begins, then x must be marked during the execution of
DFS(v), which implies that v can reach x . Since x can also reach v, we must have x ∈ C ,
contradicting the definition of x .

We conclude that C is a source component of G. �

Essentially the same argument implies the following more general result.

Lemma 5. For any edge v�w in G, if finish(v) < finish(w), then v and w are strongly connected
in G.

Proof: Let v�w be an arbitrary edge of G. There are three cases to consider.If w is unmarked
when DFS(v) begins, then the recursive call to DFS(w) finishes w, which implies that finish(w)<
finish(v). If w is still active when DFS(v) begins, there must be a path from w to v, which implies
that v and w are strongly connected. Finally, if w is finished when DFS(v) begins, then clearly
finish(w)< finish(v). �

This observation is consistent with our earlier topological sorting algorithm; for every edge
v�w in a directed acyclic graph, we have finish(v)> finish(w).

It is easy to check (hint, hint) that any directed G has exactly the same strong components as
its reversal rev(G); in fact, we have rev(scc(G)) = scc(rev(G)). Thus, if we order the vertices of G
by their finishing times in DFSAll(rev(G)), the last vertex in this order lies in a sink component
of G. Thus, if we run DFSAll(G), visiting vertices in reverse order of their finishing times in
DFSAll(rev(G)), then each call to DFS visits exactly one strong component of G.

Putting everything together, we obtain the following algorithm to count and label the strong
components of a directed graph in O(V + E) time, first discovered (but never published) by
Rao Kosaraju in 1978, and then independently rediscovered by Micha Sharir in 1981. The
Kosaraju-Sharir algorithm has two phases. The first phase performs a depth-first search of the
reversal of G, pushing each vertex onto a stack when it is finished. In the second phase, we
perform another depth-first search of the original graph G, considering vertices in the order they
appear on the stack.
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KosarajuSharir(G):
〈〈Phase 1: Push in finishing order〉〉
unmark all vertices
for all vertices v

if v is unmarked
clock← RevPushDFS(v)

〈〈Phase 2: DFS in stack order〉〉
unmark all vertices
count← 0
while the stack is non-empty

v ← Pop
if v is unmarked

count← count+ 1
LabelOneDFS(v, count)

RevPushDFS(v):
mark v
for each edge v�u in rev(G)

if u is unmarked
RevPushDFS(u)

Push(v)

LabelOneDFS(v, count):
mark v
label(v)← count
for each edge v�w in G

if w is unmarked
LabelOneDFS(w, count)

With further minor modifications, we can also compute the strongly connected component
graph scc(G) in O(V + E) time.

Exercises

0. (a) Describe an algorithm to compute the reversal rev(G) of a directed graph in O(V + E)
time.

(b) Prove that for any directed graph G, the strong component graph scc(G) is a dag.

(c) Prove that for any directed graph G, we have scc(rev(G)) = rev(scc(G)).

(d) Suppose S and T are two strongly connected components in a directed graph G.
Prove that finish(u)< finish(v) for all vertices u ∈ S and v ∈ T .

1. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of these
line segments are called the vertices of the path. The length of a polygonal path is the sum
of the lengths of its segments. A polygonal path with vertices (x1, y1), (x2, y2), . . . , (xk, yk)
is monotonically increasing if x i < x i+1 and yi < yi+1 for every index i—informally, each
vertex of the path is above and to the right of its predecessor.

A monotonically increasing polygonal path with seven vertices through a set of points

Suppose you are given a set S of n points in the plane, represented as two arrays
X [1 .. n] and Y [1 .. n]. Describe and analyze an algorithm to compute the length of the
maximum-length monotonically increasing path with vertices in S. Assume you have
a subroutine Length(x , y, x ′, y ′) that returns the length of the segment from (x , y) to
(x ′, y ′).
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2. Let G = (V, E) be a given directed graph.

(a) The transitive closure GT is a directed graph with the same vertices as G, that contains
any edge u�v if and only if there is a directed path from u to v in G. Describe an
efficient algorithm to compute the transitive closure of G.

(b) A transitive reduction GTR is a graph with the smallest possible number of edges whose
transitive closure is GT . (The same graph may have several transitive reductions.)
Describe an efficient algorithm to compute the transitive reduction of G.

3. One of the oldest¹ algorithms for exploring graphs was proposed by Gaston Tarry in 1895.
The input to Tarry’s algorithm is a directed graph G that contains both directions of every
edge; that is, for every edge u�v in G, its reversal v�u is also an edge in G.

Tarry(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s)

RecTarry(v):
mark v 〈〈“visit v”〉〉
if there is a white arc v�w

if w is unmarked
color w�v green

color v�w red ©

〈〈“traverse v�w”〉〉RecTarry(w)
else if there is a green arc v�w

color v�w red ©

〈〈“traverse v�w”〉〉RecTarry(w)

We informally say that Tarry’s algorithm “visits” vertex v every time it marks v, and it
“traverses” edge v�w when it colors that edge red and recursively calls RecTarry(w).

(a) Describe how to implement Tarry’s algorithm so that it runs in O(V + E) time.

(b) Prove that no directed edge in G is traversed more than once.

(c) When the algorithm visits a vertex v for the kth time, exactly how many edges into v
are red, and exactly how many edges out of v are red? [Hint: Consider the starting
vertex s separately from the other vertices.]

(d) Prove each vertex v is visited at most deg(v) times, except the starting vertex s, which
is visited at most deg(s) + 1 times. This claim immediately implies that Tarry(G)
terminates.

(e) Prove that when Tarry(G) ends, the last visited vertex is the starting vertex s.

(f) For every vertex v that Tarry(G) visits, prove that all edges into v and out of v are red
when Tarry(G) halts. [Hint: Consider the vertices in the order that they are marked
for the first time, starting with s, and prove the claim by induction.]

(g) Prove that Tarry(G) visits every vertex of G. This claim and the previous claim imply
that Tarry(G) traverses every edge of G exactly once.

4. Consider the following variant of Tarry’s graph-traversal algorithm; this variant traverses
green edges without recoloring them red and assigns two numerical labels to every vertex:

¹Even older graph-traversal algorithms were described by Charles Trémaux in 1882, by Christian Wiener in 1873,
and (implicitly) by Leonhard Euler in 1736. Wiener’s algorithm is equivalent to depth-first search in a connected
undirected graph.
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Tarry2(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s, 1)

RecTarry2(v, clock):
if v is unmarked

pre(v)← clock; clock← clock+ 1
mark v

if there is a white arc v�w
if w is unmarked

color w�v green
color v�w red
RecTarry2(w, clock)

else if there is a green arc v�w
post(v)← clock; clock← clock+ 1
RecTarry2(w, clock)

Prove or disprove the following claim: When Tarry2(G) halts, the green edges define a
spanning tree and the labels pre(v) and post(v) define a preorder and postorder labeling
that are all consistent with a single depth-first search of G. In other words, prove or
disprove that Tarry2 produces the same output as depth-first search.

5. For any two nodes u and v in a directed acyclic graph G, the interval G[u, v] is the union
of all directed paths in G from u to v. Equivalently, G[u, v] consists of all vertices x such
that x ∈ Reach(u) and v ∈ Reach(x), together with all the edges in G connecting those
vertices.

Suppose we are given a directed acyclic graph G, in which every edge has a numerical
weight, which may be positive, negative, or zero. Describe an efficient algorithm to find the
maximum-weight interval in G, where the weight of any interval is the sum of the weights
of its vertices. [Hint: Don’t try to be clever.]

6. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm to find the
path from s to t with maximum total weight.

(c) Suppose we are also given an integer `. Describe an efficient algorithm to find the
maximum-weight path from s to t, such that the path contains at most ` edges.
(Assume there is at least one such path.)

(d) Suppose the vertices of G have integer labels, where label(s) = −∞ and label(t) =∞.
Describe an algorithm to find the path from s to t with the maximum number of
edges, such that the vertex labels define an increasing sequence.

(e) Describe an algorithm to compute the number of distinct paths from s to t in G.
(Assume that you can add arbitrarily large integers in O(1) time.)

7. Let G and H be directed acyclic graphs, whose vertices have labels from some fixed alphabet,
and let A[1 ..`] be a string over the same alphabet. Any directed path in G has a label,
which is a string obtained by concatenating the labels of its vertices.

(a) Describe an algorithm that either finds a path in G whose label is A or correctly
reports that there is no such path.

12
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(b) Describe an algorithm to find the number of paths in G whose label is A. (Assume
that you can add arbitrarily large integers in O(1) time.)

(c) Describe an algorithm to find the longest path in G whose label is a subsequence of A.

(d) Describe an algorithm to find the shortest path in G whose label is a supersequence of
A.

(e) Describe an algorithm to find a path in G whose label has minimum edit distance
from A.

(f) Describe an algorithm to find the longest string that is both a label of a directed path
in G and the label of a directed path in H.

(g) Describe an algorithm to find the longest string that is both a subsequence of the label
of a directed path in G and a subsequence of the label of a directed path in H.

(h) Describe an algorithm to find the shortest string that is both a supersequence of the
label of a directed path in G and a supersequence of the label of a directed path in H.

(i) Describe an algorithm to find the longest path in G whose label is a palindrome.

(j) Describe an algorithm to find the longest palindrome that is a subsequence of the
label of a path in G.

(k) Describe an algorithm to find the shortest palindrome that is a supersequence of the
label of a path in G.

8. Suppose two players are playing a turn-based game on a directed acyclic graph G with
a unique source s. Each vertex v of G is labeled with a real number `(v), which could
be positive, negative, or zero. The game starts with three tokens at s. In each turn, the
current player moves one of the tokens along a directed edge from its current node to
another node, and the current player’s score is increased by `(u) · `(v), where u and v are
the locations of the two tokens that did not move. At most one token is allowed on any
node except s at any time. The game ends when the current player is unable to move (for
example, when all three tokens lie on sinks); at that point, the player with the higher score
is the winner.

Describe an efficient algorithm to determine who wins this game on a given labeled
graph, assuming both players play optimally.

?9. Let x = x1 x2 . . . xn be a given n-character string over some finite alphabet Σ, and let A be
a deterministic finite-state machine with m states over the same alphabet.

(a) Describe and analyze an algorithm to compute the length of the longest subsequence
of x that is accepted by A. For example, if A accepts the language (AR)∗ and
x = ABRACADABRA, your algorithm should output the number 4, which is the length
of the subsequence ARAR.

(b) Describe and analyze an algorithm to compute the length of the shortest supersequence
of x that is accepted by A. For example, if A accepts the language (ABCDR)∗ and
x = ABRACADABRA, your algorithm should output the number 25, which is the length
of the supersequence ABCDRABCDRABCDRABCDRABCDR.
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10. Not every dynamic programming algorithm can be modeled as finding an optimal path
through a directed acyclic graph; the most obvious counterexample is the optimal binary
search tree problem. But every dynamic programming problem does traverse a dependency
graph in reverse topological order, performing some additional computation at every vertex.

(a) Suppose we are given a directed acyclic graph G where every node stores a numerical
search key. Describe and analyze an algorithm to find the largest binary search tree
that is a subgraph of G.

(b) Let G be a directed acyclic graph with the following features:

• G has a single source s and several sinks t1, t2, . . . , tk.
• Each edge v�w has an associated numerical value p(v�w) between 0 and 1.
• For each non-sink vertex v, we have

∑

w p(v�w) = 1.

The values p(v�w) define a random walk in G from the source s to some sink t i; after
reaching any non-sink vertex v, the walk follows edge v�w with probability p(v�w).
Describe and analyze an algorithm to compute the probability that this random walk
reaches sink t i, for every index i. (Assume that any arithmetic operation requires
O(1) time.)
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