1. On their long journey from Denmark to England, Rosencrantz and Guildenstern amuse themselves by playing the following game with a fair coin. First Rosencrantz flips the coin over and over until it comes up tails. Then Guildenstern flips the coin over and over until he gets as many heads in a row as Rosencrantz got on his turn. Here are three typical games:

Rosencrantz: H H T
Guildenstern: H T H H

Rosencrantz: T
Guildenstern: (no flips)

Rosencrantz: H H H T
Guildenstern: T H T H T H T H H H

(a) What is the exact expected number of flips in one of Rosencrantz’s turns?
(b) Suppose Rosencrantz happens to flip k heads in a row on his turn. What is the exact expected number of flips in Guildenstern’s next turn?
(c) What is the exact expected total number of flips (by both Rosencrantz and Guildenstern) in a single game?

Include formal proofs that your answers are correct. If you have to appeal to “intuition” or “common sense”, your answer is almost certainly wrong!

2. Recall from class that a priority search tree is a binary tree in which every node has both a search key and a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a min-heap for the priorities. A heater is a priority search tree in which the priorities are given by the user, and the search keys are distributed uniformly and independently at random in the real interval [0, 1]. Intuitively, a heater is an “anti-treap”.

The following questions consider an n-node heater T whose priorities are the integers from 1 to n. Here we identify each node in T by its priority rank, rather than by the rank of its search keys; for example, “node 5” means the node in T with the 5th smallest priority. In particular, the min-heap property implies that node 1 is the root of T. Finally, let i and j be arbitrary integers such that 1 ≤ i < j ≤ n.
(a) What is the exact expected depth of node \(j \) in an \(n \)-node heater? Answering the following subproblems will help you:

i. Prove that in a uniformly random permutation of the \((i + 1) \)-element set \(\{1, 2, \ldots, i, j\} \), elements \(i \) and \(j \) are adjacent with probability \(2/(i + 1) \).

ii. Prove that node \(i \) is an ancestor of node \(j \) with probability \(2/(i + 1) \). [Hint: Use the previous question!]

iii. What is the probability that node \(i \) is a descendant of node \(j \)? [Hint: Do not use the previous question!]

(b) Describe and analyze an algorithm to insert a new item into a heater. Express the expected running time of the algorithm in terms of the priority rank of the newly inserted item.

(c) Describe an algorithm to delete the minimum-priority item (the root) from an \(n \)-node heater. What is the expected running time of your algorithm?

3. Suppose we are given a two-dimensional array \(M[1..n, 1..n] \) in which every row and every column is sorted in increasing order and no two elements are equal.

(a) Describe and analyze an algorithm to solve the following problem in \(O(n) \) time: Given indices \(i, j, i', j' \) as input, compute the number of elements of \(M \) smaller than \(M[i, j] \) and larger than \(M[i', j'] \).

(b) Describe and analyze an algorithm to solve the following problem in \(O(n) \) time: Given indices \(i, j, i', j' \) as input, return an element of \(M \) chosen uniformly at random from the elements smaller than \(M[i, j] \) and larger than \(M[i', j'] \). Assume the requested range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of \(M \) in \(O(n \log n) \) expected time.

Assume you have access to a subroutine \(\text{RANDOM}(k) \) that returns an integer chosen independently and uniformly at random from the set \(\{12, \ldots, k\} \), given an arbitrary positive integer \(k \) as input.
New CS 473 Spring 2015 — Homework 5 Problem 1

(a) What is the exact expected number of flips in one of Rosencrantz’s turns?
(b) Suppose Rosencrantz happens to flip k heads in a row on his turn. What is the exact expected number of flips in Guildenstern’s next turn?
(c) What is the exact expected total number of flips (by both Rosencrantz and Guildenstern) in a single game?
New CS 473 Spring 2015 — Homework 5 Problem 2

<table>
<thead>
<tr>
<th>Name:</th>
<th>NetID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>NetID:</td>
</tr>
<tr>
<td>Name:</td>
<td>NetID:</td>
</tr>
</tbody>
</table>

(a) What is the exact expected depth of node \(j \) in an \(n \)-node heater?

(b) Describe and analyze an algorithm to insert a new item into a heater. Express the expected running time of the algorithm in terms of the priority rank of the newly inserted item.

(c) Describe an algorithm to delete the minimum-priority item (the root) from an \(n \)-node heater. What is the expected running time of your algorithm?
(a) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices i, j, i', j' as input, compute the number of elements of M smaller than $M[i, j]$ and larger than $M[i', j']$.

(b) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices i, j, i', j' as input, return an element of M chosen uniformly at random from the elements smaller than $M[i, j]$ and larger than $M[i', j']$. Assume the requested range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in $O(n \log n)$ expected time.