Video Magnification

Magritte, “The Listening Room”

Computational Photography
Derek Hoiem, University of Illinois
Today

1. Go over common mistakes in midterm

2. Video Magnification
 - Lagrangian (point tracking) approach
 - Eulerian (signal within a pixel) approach

• Video Microphone
Imperceptible Motions and Changes

[Liu et al. 2005]

[Wu et al. 2012]
MAGNIFIED Imperceptible Motions and Changes

[Liu et al. 2005] [Wu et al. 2012]
Motion Magnification

Goal: exaggerate selected motions

Ideas?
Approach 1: Point Tracking

Motion Magnification (SIGGRAPH 2005)

Ce Liu Antonio Torralba William T. Freeman Frédo Durand Edward H. Adelson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Following slides based on SG 2005 presentation:
http://people.csail.mit.edu/celiu/motionmag/motionmag.html
Naïve Approach

• Magnify the estimated optical flow field
• Rendering by warping

Original sequence

Magnified by naïve approach
Tracking-based Motion Magnification

- (a) Registered input frame
- (b) Clustered trajectories of tracked features
- (c) Layers of related motion and appearance
- (d) Motion magnified, showing holes
- (e) After texture in-painting to fill holes
- (f) After user’s modifications to segmentation map in (c)

Liu et al. *Motion Magnification*, 2005
Robust Video Registration

• Find feature points with Harris corner detector on the reference frame
• Brute force tracking feature points
• Select a set of robust feature points with inlier and outlier estimation (most from the rigid background)
• Warp each frame to the reference frame with a global affine transform
Feature tracking trick 1: Adaptive Region of Support

- Brute force search

- Learn adaptive region of support using expectation-maximization (EM) algorithm

Confused by occlusion!
Feature tracking trick 2: trajectory pruning

- Tracking with adaptive region of support
- Outlier detection and removal by interpolation

Outliers at full occlusion!
Comparison

With adaptive region of support and trajectory pruning
Cluster trajectories based on normalized complex correlation

- The similarity metric should be independent of phase and magnitude
- Normalized complex correlation

\[S(C_1, C_2) = \frac{\left| \sum_t C_1(t) \overline{C_2(t)} \right|^2}{\sqrt{\sum_t C_1(t) \overline{C_1(t)}} \sqrt{\sum_t C_2(t) \overline{C_2(t)}}} \]
Spectral Clustering

Affinity matrix

Clustering

Reordering of affinity matrix

Two clusters
Clustering Results
From Sparse Feature Points to Dense Optical Flow Field

Interpolate dense optical flow field using locally weighted linear regression

Cluster 1: leaves
Cluster 2: swing
Motion Layer Assignment

• Assign each pixel to a motion cluster layer, using four cues:
 – **Motion likelihood**—consistency of pixel’s intensity if it moves with the motion of a given layer (dense optical flow field)
 – **Color likelihood**—consistency of the color in a layer
 – **Spatial connectivity**—adjacent pixels favored to belong the same group
 – **Temporal coherence**—label assignment stays constant over time

• Energy minimization using graph cuts
Segmentation Results

Two additional layers: static background and outlier
Layered Motion Representation for Motion Processing

- Background
- Layer 1
- Layer 2

Layer mask

Occluding layers

Appearance for each layer before texture filling-in

Appearance for each layer after texture filling-in
Discussion of point tracking approach

• Good: applies to any motion

• Bad: requires accurate point tracking, clustering and texture synthesis, so likely to fail
Approach 2: pixelwise processing

Eulerian Video Magnification for Revealing Subtle Changes in the World
Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Fredo Durand, William T. Freeman
ACM Transactions on Graphics, Volume 31, Number 4 (Proc. SIGGRAPH) 2012

Phase-based Video Motion Processing
Neal Wadhwa, Michael Rubinstein, Fredo Durand, William T. Freeman
ACM Transactions on Graphics, Volume 32, Number 4 (Proc. SIGGRAPH) 2013

Following slides based on Siggraph presentations:
http://people.csail.mit.edu/mrub/vidmag/
http://people.csail.mit.edu/nwadhwa/phase-video/
Lagrangian and Eulerian Perspectives: Fluid Dynamics

Lagrangian

Eulerian
Eulerian Perspective: Videos

- Each pixel is processed independently
- Treat each pixel as a time series and apply signal processing to it
Method Overview

- Spatial Decomposition
- Temporal Filtering
- Reconstruction

Laplacian Pyramid

Bandpass filter intensity at each pixel over time

Amplify bandpassed signal and add back to original
Subtle Color Variations

• The face gets slightly redder when blood flows
• Unfortunately usually below the per pixel noise level

Input frame

Luminance trace (zero mean)
Subtle Color Variations

1. Average spatially to overcome sensor and quantization noise

Input frame
Amplifying Subtle Color Variations

2. Filter temporally to extract the signal of interest

\[\text{Spatially averaged luminance trace} \otimes \text{Temporal filter} = \text{Temporally bandpassed trace} \]
Color Amplification Results

Source

Color-amplified (x100)
0.83-1 Hz (50-60 bpm)
Heart Rate Extraction

Peak detection

Temporally bandpassed trace (one pixel)

Pulse locations
Heart Rate Extraction

Thanks to Dr. Donna Brezinski and the Winchester Hospital staff 2.33-2.67 Hz (140-160 bpm)
Why It Amplifies Motion
Relating Temporal and Spatial Changes

\[(1 + \alpha)B(x, t) \approx (\delta(t)\delta_x(t))I'(x, t)\]

(1st order Taylor expansion)
Relating Temporal and Spatial Changes

- Signal at time t
- Signal at time $t + 1$
- Motion-magnified

Courtesy of Lili Sun
Synthetic 2D Example
Selective Motion Magnification

Source
(Single video with 4 blobs)

Temporal filter:

1-3 Hz
Selective Motion Magnification

Source
(Single video with 4 blobs)

Motion-magnified (3 Hz)

Temporal filter:

2-4 Hz
Selective Motion Magnification

Source
(Single video with 4 blobs)

Motion-magnified (5 Hz)

Temporal filter:
Selective Motion Magnification

Source
(Single video with 4 blobs)

Motion-magnified (7 Hz)

Temporal filter:

6-8 Hz

7 Hz 5 Hz
3 Hz 2 Hz

7 Hz 5 Hz
3 Hz 2 Hz
When Does It Break?

Intensity

Space

Clipped

Clipped

Signal at time t

Signal at time $t + 1$

Motion-magnified
Motion Magnification Artifacts

Source

Motion-magnified (3.6-6.2 Hz, x60)
Scale-varying Amplification

- The amplification is more accurate for low spatial frequencies
 - Images are smoother
 - Motions are smaller

- Use the desired α for lower spatial frequencies, and attenuate for the higher spatial frequencies

\[
(1 + \alpha)\delta(t) < \frac{\lambda}{8}
\]

Amplification

\[\begin{align*}
\alpha & \quad \text{Linear falloff} \\
\lambda & \quad \text{Desired amplification}
\end{align*}\]

Spatial wavelength \((2\pi/\text{freq})\)
Motion Magnification Results

Source

Motion-magnified (0.4-3 Hz, x10)
Motion Magnification

Source

Motion-magnified (0.4-3 Hz, x10)

Radial

Ulnar

Radial artery

Ulnar artery

x

y

time
Discussion of pixelwise intensity amplification approach

• Good:
 – Does not require explicit motion estimation or texture synthesis (robust)
 – Very fast (real time)

• Bad:
 – Can only handle very small motions
 – Amplifies noise
Limitations of Linear Motion Processing

- Noise amplified with signal

\[
\frac{\partial f}{\partial t} \quad \frac{\partial x}{\partial t} \\
\frac{\partial f}{\partial x}
\]

- Signal at time \(t + \Delta t \)
- Motion-magnified

![Graph showing intensity vs space (x)](image-url)
Limitations of Linear Motion Processing

Source

Overshoot

Linear SIGGRAPH’12
Eulerian approach part 2: shift phase instead of amplifying intensity

Translation in space is equivalent to a shift in phase

- Linear Motion Processing
 - Assumes images are locally linear
 - Translate by **changing intensities**

- Phase-Based Motion Processing
 - Represents images as collection of local sinusoids
 - Translate by **shifting phase**
Linear vs. Phase-Based Motion Processing

Source
Linear SIGGRAPH’12
Phase-based SIGGRAPH’13
Phase over Time

Input

Wavelets

Phase over Time

Intensity

Space(x)

Intensity

Space(x)

Intensity

Space(x)

Intensity

Space(x)

Time (t)

Radians

Time (t)

Radians

Time (t)
Phase over Time

Input

Phase over Time

Wavelets

Motion-magnified

Intensity vs. Space (x)

Intensity vs. Time (t)

Radians vs. Time (t)
2D Complex Steerable Pyramid

Filter Bank

Idealized Transfer Functions

Real
Orientation 1
Orientation 2

Imag
Orientation 1
Orientation 2

Scale 1

Scale 2

FFT

Frequency (ω_x)

Highpass Residual

Lowpass Residual

Orientation

Scale

Frequency (ω_y)
Phase over Time

Filter Bank

Scale 1
- Real
- Imag
- Orientation 1
- Orientation 2

Scale 2
- Real
- Imag
- Orientation 1
- Orientation 2

Amplitude
Phase
Sub-bands

Phase over time

Time (s)

Bandpassed Phase over time

Temporal Filtering

Phase over time

Time (s)
New Phase-Based Pipeline

- Filter Bank
 - Sub-bands
 - Real
 - Imag
 - Scale 1 (Orientation 1, Orientation 2)
 - Scale 2 (Orientation 1, Orientation 2)

- Amplitude
- Phase
- Bandpassed Phase

- Temporal Filtering
 - Temporal filtering on phases

- Reconstruction

Complex steerable pyramid [Simoncelli et al. 1992]
Improvement #1: Less Noise

Source (IID Noise, std=0.1)

Linear [Wu et al. 2012] (x50)
Noise **amplified**

Phase-based (x50)
Noise **translated**
Improvement #2: More Amplification

Amplification factor $\alpha = 0.0, \delta = 0.1 \leftarrow$ Motion in the sequence

Range of linear method:

Range of phase-based method:

4 times the amplification!
Limits of Phase Based Magnification

- Local phase can move image features, but only within the filter window

\[
\text{Amplification factor } \rightarrow \quad \alpha = 0.0
\]
Comparison with [Wu et al. 2012]

Wu et al. 2012
Eye Movements

Source (500FPS)
Expressions

Source

Low frequency motions

Mid-range frequency motions
Ground Truth Validation

- Induce motion (with hammer)
- Record with accelerometer
Ground Truth Validation
Motion Attenuation

Source

Sequence courtesy Vimeo user Vincent Laforet
Car Engine

Source
Car Engine

22Hz Magnified
Car Engine

Source
Car Engine

22Hz Magnified
Neck Skin Vibrations

Source (2 KHz)
Source (2 KHz)

100 Hz Amplified x100

Fundamental frequency: ~100Hz
Discussion of pixelwise phase magnification approach

• Good:
 – Does not require explicit motion estimation
 – Produces more direct translations (instead of perceived motion)
 – Does not amplify noise

• Bad:
 – Limited in range of amplification (compared to pointwise approach)
 – May have difficulty with non-periodic motion and large motions
Non-periodic Motions and Large Motions

Source (300 FPS) Motion Magnification x50 Motion Magnification x50 Large Motions Unmagnified

Non-periodic motion
The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis Michael Rubinstein Neal Wadhwa
Gautham Mysore Fredo Durand William T. Freeman

(slides adopted from Siggraph presentation)
Remote Sound Recovery
Sound and Motion

Source: mediacollege.com
The Visual Microphone

Input

Air pressure (Pa)

Object response (A)

RMS Displacement

Frequency

Object motion (mm disp.)

Video (pixels)

Camera (Projection)

Processing (B)

Recovered Signal (~Pa)

Object response (A)

Frequency

RMS Displacement

Object motion (mm disp.)

Video (pixels)

Recovered Signal (~Pa)
Processing

- Extract local motion signals
- Average and Align
- Post-process
Some materials are better microphones than others
Sound Recovered from Video

Source sound in the room

Waveform

Spectrogram

Recovered sound

2200Hz video
Sound Recovered from Video

Source sound in the room

Waveform

Spectrogram

Recovered sound

2200Hz video
Sound Recovered from Video

Source sound in the room

Waveform

Spectrogram

Recovered sound

(small patch on the chip bag)

20 kHz video
High speed video
(actual video playing here)

Object
Automatic Identification of Recovered Audio

Sound Recovered From Video of Earbuds
Rolling Shutter

https://www.flickr.com/photos/sorenragstad/3904937619/
http://www.flickr.com/photos/boo66/5730668979/
Rolling Shutter

Image of vibrating object projected on sensor

Image read from rolling shutter sensor

Motion and artifacts exaggerated here for illustration
Rolling Shutter

Image of vibrating object projected on sensor

Image read from rolling shutter sensor

Motion and artifacts exaggerated here for illustration
Rolling Shutter

Input video (60 fps)

Recovered Sound
Rolling Shutter

Input video (60 fps)

Recovered Sound

400Hz!
Summary

• Several ways to magnify motion
 – Directly measure and exaggerate point motions
 – Amplify intensity changes after temporal filtering (creating apparent motion)
 – Amplify local phase variations after temporal filtering

• Micro-motion estimates can be used to measure sound
Next week

- Final class
 - A few examples of cutting edge applications
 - Where to learn more
 - Course feedback (important for me)