Single-view 3D Reconstruction

Computational Photography
Derek Hoiem, University of Illinois

Some slides from Alyosha Efros, Steve Seitz
Office hours

• Amin: today (5pm)
• Derek: tomorrow (11am), Monday (2pm)
Message from Google

• Looking for people who can develop computational photography algorithms for cameras
 – E.g., take multiple pictures and do HDR or improve resolution or contrast

• Skills include knowledge of algorithms and ability to prototype and implement on camera platform
Project 3

- Do in teams of two
- Pick your partner now, will hand out mirrored spheres for light probes on Tues
Take-home question

Suppose you have estimated finite three vanishing points corresponding to orthogonal directions:

1) How to solve for intrinsic matrix? (assume K has three parameters)
 - The transpose of the rotation matrix is its inverse
 - Use the fact that the 3D directions are orthogonal

2) How to recover the rotation matrix that is aligned with the 3D axes defined by these points?
 - In homogeneous coordinates, 3d point at infinity is (X, Y, Z, 0)

Photo from online Tate collection
Take-home question

Assume that the man is 6 ft tall.
 – What is the height of the front of the building?
 – What is the height of the camera?
Take-home question

Assume that the man is 6 ft tall. \(\frac{0.92+1.55}{1.55} \times 6 = 9.56 \)

– What is the height of the front of the building?
– What is the height of the camera? \(\approx 5'7 \)
Focal length, aperture, depth of field

- Increase in focal length “zooms in”, decreasing field of view (and light per pixel), increasing depth of field (less blur)

- Increase in aperture lets more light in but decreases depth of field

Slide source: Seitz
Today’s class: 3D Reconstruction
The challenge

One 2D image could be generated by an infinite number of 3D geometries
The solution

Make simplifying assumptions about 3D geometry
Today’s class: Two Models

• Box + frontal billboards

• Ground plane + non-frontal billboards
“Tour into the Picture” (Horry et al. SIGGRAPH ’97)

Create a 3D “theatre stage” of five billboards

Specify foreground objects through bounding polygons

Use camera transformations to navigate through the scene

Following slides modified from Efros
The idea

Many scenes can be represented as an axis-aligned box volume (i.e. a stage)

Key assumptions
• All walls are orthogonal
• Camera view plane is parallel to back of volume

How many vanishing points does the box have?
• Three, but two at infinity
• Single-point perspective

Can use the vanishing point to fit the box to the particular scene
Step 1: specify scene geometry

- User controls the inner box and the vanishing point placement (# of DOF?)

- Q: What’s the significance of the vanishing point location?
- A: It’s at eye (camera) level: ray from center of projection to VP is perpendicular to image plane
 - Under single-point perspective assumptions, the VP should be the principal point of the image
Example of user input: vanishing point and back face of view volume are defined
Example of user input: vanishing point and back face of view volume are defined.
Comparison of how image is subdivided based on two different camera positions. You should see how moving the box corresponds to moving the eyepoint in the 3D world.
Another example of user input: vanishing point and back face of view volume are defined.
Another example of user input: vanishing point and back face of view volume are defined
Comparison of two camera placements – left and right. Corresponding subdivisions match view you would see if you looked down a hallway.
Question

- Think about the camera center and image plane...
 - What happens when we move the box?
 - What happens when we move the vanishing point?
2D to 3D conversion

• First, we can get ratios

![Diagram showing 2D to 3D conversion]

- left
- right
- top
- bottom
- vanishing point
- back plane
2D to 3D conversion

Size of user-defined back plane determines width/height throughout box (orthogonal sides)

Use top versus side ratio to determine relative height and width dimensions of box

Left/right and top/bot ratios determine part of 3D camera placement
Depth of the box

- Can compute by similar triangles (CVA vs. CV’A’)
- Need to know focal length f (or FOV)

- Note: can compute position on any object on the ground
 - Simple unprojection
 - What about things off the ground?
Step 2: map image textures into frontal view

2d coordinates

A
B
C
D

3d plane coordinates

A'
B'
C'
D'
To un warp (rectify) an image solve for homography H given p and p': $wp' = Hp$
Computing homography

Assume we have four matched points: How do we compute homography H?

Direct Linear Transformation (DLT)

$$p' = Hp$$

$$p' = \begin{bmatrix} w'u' \\ w'v' \\ w' \end{bmatrix}$$

$$H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

$$\begin{bmatrix} -u & -v & -1 & 0 & 0 & 0 & 0 & uu' & vu' & u' \\ 0 & 0 & 0 & -u & -v & -1 & uv' & vv' & v' \end{bmatrix} h = 0$$

$$h = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \\ h_9 \end{bmatrix}$$
Computing homography

Direct Linear Transform

\[
\begin{bmatrix}
-u_1 & -v_1 & -1 & 0 & 0 & 0 & u_1u' & v_1u' & u'\\
0 & 0 & 0 & -u_1 & -v_1 & -1 & u_1v' & v_1v' & v' \\
& & & & & & \vdots \\
0 & 0 & 0 & -u_n & -v_n & -1 & u_nv_n & v_nv_n & v_n
\end{bmatrix}
\]

\(h = 0 \Rightarrow Ah = 0 \)

- Apply SVD: \(USV^T = A \)
- \(h = V_{\text{smallest}} \) (column of \(V^T \) corr. to smallest singular value)

\[
\begin{bmatrix}
h_1 \\
h_2 \\
\vdots \\
h_9
\end{bmatrix}
\]

\[
H = \begin{bmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & h_9
\end{bmatrix}
\]

Matlab

\[
[U, S, V] = \text{svd}(A);
h = V(:, end);
\]

Explanation of SVD, solving systems of linear equations, derivation of solution here
Solving for homographies (more detail)

\[
\begin{bmatrix}
x'_i \\
y'_i \\
1
\end{bmatrix} \Rightarrow \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{bmatrix} \begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Solving for homographies (more detail)

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\
 & \vdots & \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22}
\end{bmatrix}
=
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 0
\end{bmatrix}
\]

\[
A
=\begin{bmatrix}
 2n & \times & 9
\end{bmatrix}
\]

\[
h
=\begin{bmatrix}
 9 \\
 2n
\end{bmatrix}
\]

Defines a least squares problem:

\[
\text{minimize } \| Ah - 0 \|^2
\]

- Since \(h \) is only defined up to scale, solve for unit vector \(\hat{h} \)
- Solution: \(\hat{h} = \) eigenvector of \(A^TA \) with smallest eigenvalue
- Works with 4 or more points
Tour into the picture algorithm

1. Set the box corners
Tour into the picture algorithm

1. Set the box corners
2. Set the VP
3. Get 3D coordinates
 - Compute height, width, and depth of box
4. Get texture maps
 - Homographies for each face
5. Create file to store plane coordinates and texture maps
Result

Render from new views

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj5/www/dmillett/
Foreground Objects

Use separate billboard for each

For this to work, three separate images used:

- Original image.
- Mask to isolate desired foreground images.
- Background with objects removed
Foreground Objects

Add vertical rectangles for each foreground object.

Can compute 3D coordinates P_0, P_1 since they are on known plane.

P_2, P_3 can be computed as before (similar triangles).
Video from CMU class:
http://www.youtube.com/watch?v=dUAtdmGwcuM
Automatic Photo Pop-up

Input Geometric Labels Cut’n’Fold 3D Model

Image

Ground

Vertical

Sky

Learned Models

Hoiem et al. 2005
Cutting and Folding

- Fit ground-vertical boundary
 - Iterative Hough transform
Cutting and Folding

- Form polylines from boundary segments
 - Join segments that intersect at slight angles
 - Remove small overlapping polylines
- Estimate horizon position from perspective cues
Cutting and Folding

- "Fold" along polylines and at corners
- "Cut" at ends of polylines and along vertical-sky boundary
Cutting and Folding

- Construct 3D model
- Texture map
Results

http://www.cs.illinois.edu/homes/dhoiem/projects/popup/

Input Image

Cut and Fold

Automatic Photo Pop-up
Results

Input Image

Automatic Photo Pop-up
Comparison with Manual Method

Input Image

Automatic Photo Pop-up (15 sec)!

[Liebowitz et al. 1999]
Failures

Labeling Errors
Failures

Foreground Objects
Adding Foreground Labels

Recovered Surface Labels + Ground-Vertical Boundary Fit

Object Boundaries + Horizon
Fitting boxes to indoor scenes
Box Layout Algorithm

1. Detect edges

2. Estimate 3 orthogonal vanishing points

3. Apply region classifier to label pixels with visible surfaces
 – Boosted decision trees on region based on color, texture, edges, position

4. Generate box candidates by sampling pairs of rays from VPs

5. Score each box based on edges and pixel labels
 – Learn score via structured learning

6. Jointly refine box layout and pixel labels to get final estimate

Hedau et al. 2010
Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout
Experimental results

Detected Edges
Surface Labels
Box Layout

Detected Edges
Surface Labels
Box Layout
Complete 3D from RGBD

Guo Hoiem, to be submitted
Complete 3D from RGBD

1. **RGB-D Input**
 - Annotated Scene
 - Source 3D Model
 - Transferred Model

2. **Object Proposals**
 - Retrieved Region
 - Exemplar Region Retrieval
 - Retrieved Region
 - Source 3D Model

3. **Layout Proposals**
 - Transferred Model

4. **Composing**
 - Transferred Model

5. **3D Model Fitting**
 - Transferred Model

6. **Complete 3D from RGBD**
Complete 3D from RGBD
Final project ideas

• If a one-person project:
 – Interactive program to make 3D model from an image (e.g., output in VRML, or draw path for animation)

• If a two-person team, 2nd person:
 – Add tools for cutting out foreground objects and automatic hole-filling
Summary

• 2D \rightarrow 3D is mathematically impossible
 (but we do it without even thinking)

• Need right assumptions about the world geometry

• Important tools
 – Vanishing points
 – Camera matrix
 – Homography
Next Week

• Project 3 is due Monday

• Next three classes: image-based lighting
 – How to model light
 – Recover HDR image from multiple LDR images
 – Recover lighting model from an image
 – Render object into a scene with correct lighting and geometry