Object Recognition and Augmented Reality

Dali, Swans Reflecting Elephants

Computational Photography
Derek Hoiem, University of Illinois
Last class: Image Stitching

1. Detect keypoints

2. Match keypoints

3. Use RANSAC to estimate homography

4. Project onto a surface and blend
Augmented reality

• Insert and/or interact with object in scene
 – Project by Karen Liu
 – Responsive characters in AR
 – KinectFusion

• Overlay information on a display
 – Tagging reality
 – Layar
 – Google goggles
 – T2 video (13:23)
Adding fake objects to real video

Approach

1. Recognize and/or track points that give you a coordinate frame
2. Apply homography (flat texture) or perspective projection (3D model) to put object into scene

Main challenge: dealing with lighting, shadows, occlusion
Information overlay

Approach
1. Recognize object that you’ve seen before
2. Retrieve info and overlay

Main challenge: how to match reliably and efficiently?
Today

How to quickly find images in a large database that match a given image region?
Let’s start with interest points

Query

Compute interest points (or keypoints) for every image in the database and the query
Simple idea

See how many keypoints are close to keypoints in each other image

But this will be really, really slow!
Key idea 1: “Visual Words”

• Cluster the keypoint descriptors
Key idea 1: “Visual Words”

K-means algorithm

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

Key idea 1: “Visual Words”

K-means algorithm

1. Randomly select K centers
2. Assign each point to nearest center
3. Compute new center (mean) for each cluster

Kmeans: Matlab code

function C = kmeans(X, K)

% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);

lastAssignment = zeros(N, 1);
while true

% Assign each point to nearest cluster center
bestAssignment = zeros(N, 1);
mindist = Inf*ones(N, 1);
for k = 1:K
 for n = 1:N
 dist = sum((X(n, :) - C(k, :)).^2);
 if dist < mindist(n)
 mindist(n) = dist;
 bestAssignment(n) = k;
 end
 end
end

% break if assignment is unchanged
if all(bestAssignment == lastAssignment), break; end;
lastAssignment = bestAssignment;

% Assign each cluster center to mean of points within it
for k = 1:K
 C(k, :) = mean(X(bestAssignment == k, :));
end
end
K-means Demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
Key idea 1: “Visual Words”

• Cluster the keypoint descriptors

• Assign each descriptor to a cluster number
 – What does this buy us?
 – Each descriptor was 128 dimensional floating point, now is 1 integer (easy to match!)
 – Is there a catch?
 • Need a lot of clusters (e.g., 1 million) if we want points in the same cluster to be very similar
 • Points that really are similar might end up in different clusters
Key idea 1: “Visual Words”

• Cluster the keypoint descriptors
• Assign each descriptor to a cluster number
• Represent an image region with a count of these “visual words”
Key idea 1: “Visual Words”

• Cluster the keypoint descriptors
• Assign each descriptor to a cluster number
• Represent an image region with a count of these “visual words”
• An image is a good match if it has a lot of the same visual words as the query region
Naïve matching is still too slow

• Imagine matching 1,000,000 images, each with 1,000 keypoints
Key Idea 2: Inverse document file

- Like a book index: keep a list of all the words (keypoints) and all the pages (images) that contain them.

- Rank database images based on tf-idf measure.

tf-idf: Term Frequency – Inverse Document Frequency

\[t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i} \]

- # times word appears in document
- # documents
- # documents that contain the word
- # words in document
Fast visual search

“Video Google”, Sivic and Zisserman, ICCV 2003
“Scalable Recognition with a Vocabulary Tree”, Nister and Stewenius, CVPR 2006.
110,000,000 Images in 5.8 Seconds
Recognition with K-tree

Following slides by David Nister (CVPR 2006)
Performance

Image Search at the VizCentre

New query: Browse... Send File

File is 560x320

Top n results of your query.
More words is better

Improves Retrieval

Improves Speed
Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information.
Can we be more accurate?

So far, we treat each image as containing a “bag of words”, with no spatial information.

Real objects have consistent geometry.
Final key idea: geometric verification

• Goal: Given a set of possible keypoint matches, figure out which ones are geometrically consistent

How can we do this?
Final key idea: geometric verification

RANSAC for affine transform

Repeat N times:

Randomly choose 3 matching pairs

Estimate transformation

Predict remaining points and count "inliers"
Application: Large-Scale Retrieval

Query

Results on 5K (demo available for 100K)

K. Grauman, B. Leibe

[Philbin CVPR 07]
Application: Image Auto-Annotation

Left: Wikipedia image
Right: closest match from Flickr

Moulin Rouge
Tour Montparnasse
Old Town Square (Prague)
Colosseum
Viktualienmarkt
Merry-go-round
[Quack CIVR’08] K. Grauman, B. Leibe
Example Applications

Mobile tourist guide
- Self-localization
- Object/building recognition
- Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR'08]
Video Google System

1. Collect all words within query region
2. Inverted file index to find relevant frames
3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

- Demo online at:
 http://www.robots.ox.ac.uk/~vgg/research/vgogle/index.html
Summary: Uses of Interest Points

• Interest points can be detected reliably in different images at the same 3D location
 – DOG interest points are localized in x, y, scale

• SIFT is robust to rotation and small deformation

• Interest points provide correspondence
 – For image stitching
 – For defining coordinate frames for object insertion
 – For object recognition and retrieval
Next class

• Opportunities of scale: stuff you can do with millions of images
 – Texture synthesis of large regions
 – Recover GPS coordinates
 – Etc.