Single-view 3D Reconstruction

Computational Photography
Derek Hoiem, University of Illinois

Some slides from Alyosha Efros, Steve Seitz
Project 3 extension (one day)

• EWS down Fri 9pm to Sun 10am

• Project 3 now due Tues
Take-home question

Suppose you have estimated three vanishing points corresponding to orthogonal directions. How can you recover the rotation matrix that is aligned with the 3D axes defined by these points?

- Assume that intrinsic matrix K has three parameters
- Remember, in homogeneous coordinates, we can write a 3d point at infinity as \((X, Y, Z, 0)\)
Take-home question

Assume that the camera height is 5 ft.

– What is the height of the man?
– What is the height of the building?
A lens focuses parallel rays onto a single focal point
- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays
Focus with lenses

Distance to object \(S_1 \) \(\quad \) Distance to sensor \(S_2 \)

\[
\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}
\]

Equation for objects in focus

Changing the aperture size or focusing distance affects depth of field

\[\text{f-number (f/\#)} = \frac{\text{focal length}}{\text{aperture diameter}} \] (e.g., f/16 means that the focal length is 16 times the diameter)

When you change the f-number, you are changing the aperture.

[Image of flower images]
Varying the aperture

Large aperture = small DOF

Small aperture = large DOF
Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects
Shrinking the aperture

Slide by Steve Seitz
The Photographer’s Great Compromise

<table>
<thead>
<tr>
<th>What we want</th>
<th>How we get it</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>More spatial resolution</td>
<td>Increase focal length</td>
<td>Light, FOV</td>
</tr>
<tr>
<td>Broader field of view</td>
<td>Decrease focal length</td>
<td>Resolution, DOF</td>
</tr>
<tr>
<td>More depth of field</td>
<td>Decrease aperture</td>
<td>Light, DOF</td>
</tr>
<tr>
<td>More temporal resolution</td>
<td>Increase aperture</td>
<td>Temporal Res</td>
</tr>
<tr>
<td>More light</td>
<td>Shorten exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lengthen exposure</td>
<td></td>
</tr>
</tbody>
</table>
Difficulty in macro (close-up) photography

- For close objects, we have a small relative DOF
- Can only shrink aperture so far

How to get both bugs in focus?
Solution: Focus stacking

1. Take pictures with varying focal length

Example from
http://www.wonderfulphotos.com/articles/macro/focus_stacking/
Solution: Focus stacking

1. Take pictures with varying focal length
2. Combine
Focus stacking

http://www.wonderfulphotos.com/articles/macro/focus_stacking/
Focus stacking

How to combine?
Web answer: With software (Photoshop, CombineZM)

How to do it automatically?
Focus stacking

How to combine?

1. Align images (e.g., using corresponding points)
2. Two ideas
 a) Mask regions by hand and combine with pyramid blend
 b) Gradient domain fusion (mixed gradient) without masking

Automatic solution would make a very interesting final project

Recommended Reading:

http://www.digital-photography-school.com/an-introduction-to-focus-stacking

http://www.zen20934.zen.co.uk/photography/Workflow.htm#Focus%20Stacking
Relation between field of view and focal length

Field of view (angle width)

$$fov = 2 \tan^{-1} \frac{d}{2f}$$

Film/Sensor Width

Focal length
Dolly Zoom or “Vertigo Effect”

http://www.youtube.com/watch?v=NB4bikrNzMk

How is this done?

Zoom in while moving away

http://en.wikipedia.org/wiki/Focal_length
Dolly zoom (or “Vertigo effect”)

Field of view (angle width)

\[
\text{fov} = 2 \tan^{-1} \frac{d}{2f}
\]

Film/Sensor Width

Focal length

width of object

de

distance

Distance between object and camera
Today’s class: 3D Reconstruction
The challenge

One 2D image could be generated by an infinite number of 3D geometries
The solution

Make simplifying assumptions about 3D geometry
Today’s class: Two Models

• Box + frontal billboards

• Ground plane + non-frontal billboards
“Tour into the Picture” (Horry et al. SIGGRAPH ’97)

Create a 3D “theatre stage” of five billboards

Specify foreground objects through bounding polygons

Use camera transformations to navigate through the scene

Following slides modified from Efros
The idea

Many scenes can be represented as an axis-aligned box volume (i.e. a stage)

Key assumptions
• All walls are orthogonal
• Camera view plane is parallel to back of volume

How many vanishing points does the box have?
• Three, but two at infinity
• Single-point perspective

Can use the vanishing point to fit the box to the particular scene
Step 1: specify scene geometry

- User controls the inner box and the vanishing point placement (# of DOF?)

- Q: What’s the significance of the vanishing point location?

- A: It’s at eye (camera) level: ray from center of projection to VP is perpendicular to image plane
 - Under single-point perspective assumptions, the VP should be the principal point of the image
Example of user input: vanishing point and back face of view volume are defined
Example of user input: vanishing point and back face of view volume are defined
Comparison of how image is subdivided based on two different camera positions. You should see how moving the box corresponds to moving the eyepoint in the 3D world.
Another example of user input: vanishing point and back face of view volume are defined
Another example of user input: vanishing point and back face of view volume are defined.
Comparison of two camera placements – left and right. Corresponding subdivisions match view you would see if you looked down a hallway.
Question

• Think about the camera center and image plane...
 – What happens when we move the box?
 – What happens when we move the vanishing point?
2D to 3D conversion

• First, we can get ratios

back plane

left right

top

bottom

vanishing point
2D to 3D conversion

Size of user-defined back plane determines width/height throughout box (orthogonal sides)

Use top versus side ratio to determine relative height and width dimensions of box

Left/right and top/bot ratios determine part of 3D camera placement
Depth of the box

- Can compute by similar triangles (CVA vs. CV’A’)
- Need to know focal length f (or FOV)

- Note: can compute position on any object on the ground
 - Simple unprojection
 - What about things off the ground?
Step 2: map image textures into frontal view

2d coordinates

A
C
D
B

3d plane coordinates

A'
A'
C'
D'
B'
Image rectification

To unwarp (rectify) an image solve for homography H given p and p': $wp' = Hp$
Computing homography

Assume we have four matched points: How do we compute homography \mathbf{H}?

Direct Linear Transformation (DLT)

$$
\mathbf{p}' = \mathbf{Hp} \\
\begin{bmatrix}
 w' & u' \\
 w' & v' \\
 w'
\end{bmatrix}
\begin{bmatrix}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & h_9
\end{bmatrix}
\begin{bmatrix}
 h \\
 h \\
 h
\end{bmatrix} = \mathbf{0}
$$

$$
\begin{bmatrix}
 -u & -v & -1 & 0 & 0 & 0 & 0 & uu' & vu' & u' \\
 0 & 0 & 0 & -u & -v & -1 & uv' & vv' & v'
\end{bmatrix}
\begin{bmatrix}
 h_1 \\
 h_2 \\
 h_3 \\
 h_4 \\
 h_5 \\
 h_6 \\
 h_7 \\
 h_8 \\
 h_9
\end{bmatrix} = \mathbf{0}
$$
Computing homography

Direct Linear Transform

Apply SVD: \(USV^T = A \)

\[h = 0 \Rightarrow Ah = 0 \]

\[\begin{bmatrix} -u_1 & -v_1 & -1 & 0 & 0 & 0 & u_1u' & v_1u' & u'_1 \\ 0 & 0 & 0 & -u_1 & -v_1 & -1 & u_1v' & v_1v' & v'_1 \\ \vdots \\ 0 & 0 & 0 & -u_n & -v_n & -1 & u_nv'_n & v_nv'_n & v'_n \end{bmatrix} \]

- Apply SVD: \(USV^T = A \)
- \(h = V_{\text{smallest}} \) (column of \(V^T \) corr. to smallest singular value)

\[h = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_9 \end{bmatrix} \quad H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \]

Matlab

\[
[U, S, V] = svd(A); \\
h = V(:, end);
\]

Explanation of SVD (also here) and solving systems of linear equations
Solving for homographies (more detail)

\[
\begin{bmatrix}
x'_i \\
y'_i \\
1
\end{bmatrix}
= \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
x_i & y_i & 1 & 0 & 0 & 0 & -x'_ix_i & -x'_iy_i & -x'_i \\
0 & 0 & 0 & x_i & y_i & 1 & -y'_ix_i & -y'_iy_i & -y'_i
\end{bmatrix}
\begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Solving for homographies (more detail)

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -x'_1 y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1 x_1 & -y'_1 y_1 & -y'_1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -x'_n y_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_n x_n & -y'_n y_n & -y'_n
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22}
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 0
\end{bmatrix}
\]

Define a least squares problem:
\[
\text{minimize } \|Ah - 0\|^2
\]

- Since \(h \) is only defined up to scale, solve for unit vector \(\hat{h} \)
- Solution: \(\hat{h} = \text{eigenvector of } A^T A \text{ with smallest eigenvalue} \)
- Works with 4 or more points
Tour into the picture algorithm

1. Set the box corners
Tour into the picture algorithm

1. Set the box corners
2. Set the VP
3. Get 3D coordinates
 - Compute height, width, and depth of box
4. Get texture maps
 - homographies for each face
5. Create file to store plane coordinates and texture maps
Result

Render from new views

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj5/www/dmillett/
Foreground Objects

Use separate billboard for each

For this to work, three separate images used:

- Original image.
- Mask to isolate desired foreground images.
- Background with objects removed
Foreground Objects

Add vertical rectangles for each foreground object.

Can compute 3D coordinates P_0, P_1 since they are on known plane.

P_2, P_3 can be computed as before (similar triangles).
Foreground Result

Video from CMU class:
http://www.youtube.com/watch?v=dUAtdmGwcuM
Automatic Photo Pop-up

Input Geometric Labels Cut’n’Fold 3D Model

Image

Ground

Vertical

Sky

Learned Models

Hoiem et al. 2005
Cutting and Folding

- Fit ground-vertical boundary
 - Iterative Hough transform
Cutting and Folding

• Form polylines from boundary segments
 – Join segments that intersect at slight angles
 – Remove small overlapping polylines
• Estimate horizon position from perspective cues
Cutting and Folding

• “Fold” along polylines and at corners
• “Cut” at ends of polylines and along vertical-sky boundary
Cutting and Folding

- Construct 3D model
- Texture map
Results

http://www.cs.illinois.edu/homes/dhoiem/projects/popup/

Input Image

Cut and Fold

Automatic Photo Pop-up
Results

Input Image

Automatic Photo Pop-up
Comparison with Manual Method

Input Image

Automatic Photo Pop-up (15 sec)!

[Liebowitz et al. 1999]
Failures

Labeling Errors
Failures

Foreground Objects
Adding Foreground Labels

Recovered Surface Labels + Ground-Vertical Boundary Fit

Object Boundaries + Horizon
Final project ideas

• If a one-person project:
 – Interactive program to make 3D model from an image (e.g., output in VRML, or draw path for animation)

• If a two-person team, 2nd person:
 – Add tools for cutting out foreground objects and automatic hole-filling
Summary

• 2D → 3D is mathematically impossible

• Need right assumptions about the world geometry

• Important tools
 – Vanishing points
 – Camera matrix
 – Homography
Next Week

• Project 3 is due Tuesday (extension of 1 day)

• Next three classes: image-based lighting
 – How to model light
 – Recover HDR image from multiple LDR images
 – Recover lighting model from an image
 – Render object into a scene with correct lighting and geometry