Pixels and Image Filtering

Computational Photography
Derek Hoiem (presented by Kevin Karsch)

Graphic: http://www.notcot.org/post/4068/
Administrative stuff

• Any questions?

• Matlab + Linear algebra tutorial

• Office hours
 • Email coming out soon
Today’s Class: Pixels and Linear Filters

• What is a pixel? How is an image represented?

• What is image filtering and how do we do it?

• Introduce Project 1: Hybrid Images
Next three classes

• Image filters in spatial domain
 – Smoothing, sharpening, measuring texture

• Image filters in the frequency domain
 – Denoising, sampling, image compression

• Templates and Image Pyramids
 – Detection, coarse-to-fine registration
A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types:
 - Charge Coupled Device (CCD): larger yet slower, better quality
 - Complementary Metal Oxide Semiconductor (CMOS): high bandwidth, lower quality
Sensor Array

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.
The raster image (pixel matrix)
The raster image (pixel matrix)

<table>
<thead>
<tr>
<th></th>
<th>0.92</th>
<th>0.93</th>
<th>0.94</th>
<th>0.97</th>
<th>0.62</th>
<th>0.37</th>
<th>0.85</th>
<th>0.97</th>
<th>0.93</th>
<th>0.92</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>0.89</td>
<td>0.82</td>
<td>0.89</td>
<td>0.56</td>
<td>0.31</td>
<td>0.75</td>
<td>0.92</td>
<td>0.81</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>0.89</td>
<td>0.95</td>
<td>0.51</td>
<td>0.55</td>
<td>0.51</td>
<td>0.42</td>
<td>0.57</td>
<td>0.41</td>
<td>0.49</td>
<td>0.91</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>0.96</td>
<td>0.88</td>
<td>0.94</td>
<td>0.56</td>
<td>0.46</td>
<td>0.91</td>
<td>0.87</td>
<td>0.90</td>
<td>0.97</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>0.71</td>
<td>0.81</td>
<td>0.81</td>
<td>0.87</td>
<td>0.57</td>
<td>0.37</td>
<td>0.80</td>
<td>0.88</td>
<td>0.89</td>
<td>0.79</td>
<td>0.85</td>
</tr>
<tr>
<td>0.49</td>
<td>0.49</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
<td>0.50</td>
<td>0.60</td>
<td>0.58</td>
<td>0.50</td>
<td>0.61</td>
<td>0.45</td>
<td>0.33</td>
</tr>
<tr>
<td>0.86</td>
<td>0.86</td>
<td>0.84</td>
<td>0.74</td>
<td>0.58</td>
<td>0.51</td>
<td>0.39</td>
<td>0.73</td>
<td>0.92</td>
<td>0.91</td>
<td>0.49</td>
<td>0.74</td>
</tr>
<tr>
<td>0.96</td>
<td>0.96</td>
<td>0.67</td>
<td>0.54</td>
<td>0.85</td>
<td>0.48</td>
<td>0.37</td>
<td>0.88</td>
<td>0.90</td>
<td>0.94</td>
<td>0.82</td>
<td>0.93</td>
</tr>
<tr>
<td>0.69</td>
<td>0.69</td>
<td>0.49</td>
<td>0.56</td>
<td>0.66</td>
<td>0.43</td>
<td>0.42</td>
<td>0.77</td>
<td>0.73</td>
<td>0.71</td>
<td>0.90</td>
<td>0.99</td>
</tr>
<tr>
<td>0.79</td>
<td>0.79</td>
<td>0.73</td>
<td>0.90</td>
<td>0.67</td>
<td>0.33</td>
<td>0.61</td>
<td>0.69</td>
<td>0.79</td>
<td>0.73</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>0.91</td>
<td>0.91</td>
<td>0.94</td>
<td>0.89</td>
<td>0.49</td>
<td>0.41</td>
<td>0.78</td>
<td>0.78</td>
<td>0.77</td>
<td>0.89</td>
<td>0.99</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Perception of Intensity

from Ted Adelson
Perception of Intensity

from Ted Adelson
Digital Color Images

Bayer filter

© 2000 How Stuff Works
Color Image
Images in Matlab

- Images represented as a matrix
- Suppose we have a $N \times M$ RGB image called “im”
 - $im(1,1,1) =$ top-left pixel value in R-channel
 - $im(y, x, b) =$ y pixels down, x pixels to right in the b^{th} channel
 - $im(N, M, 3) =$ bottom-right pixel in B-channel
- `imread(filename)` returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with `im2double`
Image filtering

- Image filtering: compute function of local neighborhood at each position

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching
Example: box filter

\[g[\cdot, \cdot] \]

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

\[
\frac{1}{9}
\]

Slide credit: David Lowe (UBC)
Image filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m, n] = \sum_{k,l} g[k,l] f[m+k, n+l] \]
Image filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m, n] = \sum_{k,l} g[k, l] f[m+k, n+l] \]
Image filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k, n+l] \]

Credit: S. Seitz
Image filtering

\[f[\ldots] \]

\[h[\ldots] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Credit: S. Seitz
Image filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] = \sum_{k,l} g[k,l] f[m+k, n+l] \]

Credit: S. Seitz
Image filtering

\[f[\ldots] \]

\[h[\ldots] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Credit: S. Seitz
Image filtering

\[f[\ldots] \quad h[\ldots] \]

\[
h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]
\]

Credit: S. Seitz
Image filtering

\[f[\cdot,\cdot] \] \hspace{1cm} \[g[\cdot,\cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Intuitively, what’s happening?
Image filtering

\[f[\cdot, \cdot] \]

\[g[\cdot, \cdot] = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

\[h[m, n] = \sum_{k,l} g[k,l] f[m+k, n+l] \]

Credit: S. Seitz
Box Filter

What does it do?

• Replaces each pixel with an average of its neighborhood

• Achieve smoothing effect (remove sharp features)

Slide credit: David Lowe (UBC)
Smoothing with box filter
One more on board...
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Source: D. Lowe
Practice with linear filters

Original

Shifted left By 1 pixel

Source: D. Lowe
Practice with linear filters

Original

(Note that filter sums to 1)
Practice with linear filters

Original

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Source: D. Lowe
Other filters

Sobel

Vertical Edge (absolute value)
Other filters

Sobel

Horizontal Edge (absolute value)
How could we synthesize motion blur?

theta = 30; len = 20;
fil = imrotate(ones(1, len), theta, 'bilinear');
fil = fil / sum(fil(:));
figure(2), imshow(imfilter(im, fil));
Demo
Filtering vs. Convolution

• 2d filtering

 $h = \text{filter2}(g, f);$ or $h = \text{imfilter}(f, g);$

 $$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

• 2d convolution

 $h = \text{conv2}(g, f);$

 $$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-l]$$
Key properties of linear filters

Linearity:
\[\text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2) \]

Shift invariance: same behavior regardless of pixel location
\[\text{filter}(\text{shift}(f)) = \text{shift}(\text{filter}(f)) \]

Any linear, shift-invariant operator can be represented as a convolution

Source: S. Lazebnik
More properties

• Commutative: $a * b = b * a$
 – Conceptually no difference between filter and signal (image)

• Associative: $a * (b * c) = (a * b) * c$
 – Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 – This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

• Distributes over addition: $a * (b + c) = (a * b) + (a * c)$

• Scalars factor out: $k a * b = a * k b = k (a * b)$

• Identity: unit impulse $e = [0, 0, 1, 0, 0]$, $a * e = a$

Source: S. Lazebnik
Important filter: Gaussian

- Weight contributions of neighboring pixels by nearness

\[
G_\sigma = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}
\]

5 x 5, \(\sigma = 1 \)

Slide credit: Christopher Rasmussen
Smoothing with Gaussian filter
Smoothing with box filter
Gaussian filters

• Remove “high-frequency” components from the image (low-pass filter)
 – Images become more smooth

• Convolution with self is another Gaussian
 – So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 – Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

• Separable kernel
 – Factors into product of two 1D Gaussians

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[
= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right) \right)
\]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x\) and the other a function of \(y\).

In this case, the two functions are the (identical) 1D Gaussian
Separability example

2D filtering
(center location only)

The filter factors into a product of 1D filters:

Perform filtering along rows:

Followed by filtering along the remaining column:

Source: K. Grauman
Separability

- Why is separability useful in practice?
Some practical matters
Practical matters

How big should the filter be?

• Values at edges should be near zero
• Rule of thumb for Gaussian: set filter half-width to about 3σ
Practical matters

• What about near the edge?
 – the filter window falls off the edge of the image
 – need to extrapolate
 – methods:
 • clip filter (black)
 • wrap around
 • copy edge
 • reflect across edge

Source: S. Marschner
Practical matters

– methods (MATLAB):
 • clip filter (black): \texttt{imfilter}(f, g, 0)
 • wrap around: \texttt{imfilter}(f, g, ‘circular’)
 • copy edge: \texttt{imfilter}(f, g, ‘replicate’)
 • reflect across edge: \texttt{imfilter}(f, g, ‘symmetric’)

Source: S. Marschner
Practical matters

• What is the size of the output?
• MATLAB: `filter2(g, f, shape)`
 - `shape` = ‘full’: output size is sum of sizes of f and g
 - `shape` = ‘same’: output size is same as f
 - `shape` = ‘valid’: output size is difference of sizes of f and g

Source: S. Lazebnik
Application: Representing Texture
Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings
How can we represent texture?

• Compute responses of blobs and edges at various orientations and scales
Overcomplete representation: filter banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
Filter banks

- Process image with each filter and keep responses (or squared/abs responses)
How can we represent texture?

• Measure responses of blobs and edges at various orientations and scales

• Record simple statistics (e.g., mean, std.) of absolute filter responses
Can you match the texture to the response?

Filters

1

2

3

Mean abs responses

A

B

C
Representing texture by mean abs response
Project 1: Hybrid Images

Project Instructions:
http://courses.engr.illinois.edu/cs498dh3/projects/hybrid/ComputationalPhotography_ProjectHybrid.html
Take-home messages

• Image is a matrix of numbers

• Linear filtering is a dot product at each position
 – Can smooth, sharpen, translate (among many other uses)

• Be aware of details for filter size, extrapolation, cropping

• Start thinking about project (read the paper, create a test project page)
Take-home questions

1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise.

2. Write down a filter that will compute the gradient in the x-direction:

 \[\text{grad}_x(y,x) = \text{im}(y,x+1) - \text{im}(y,x) \] for each x, y
Take-home questions

3. Fill in the blanks:
 a) _ = D \times B
 b) A = _ \times _
 c) F = D \times _
 d) _ = D \times D

Filtering Operator
Next class: Thinking in Frequency