Reminder

• Matlab tutorial: Wed, 4:30pm, SC3403

• Linear algebra tutorial: Tues, 5pm, SC3403
Review: questions

1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise.

2. Write down a filter that will compute the gradient in the x-direction:

\[
\text{grad}_x(y,x) = \text{im}(y,x+1) - \text{im}(y,x) \text{ for each } x, y
\]
Review: questions

3. Fill in the blanks:

a) _ = D \times B
b) A = _ \times _

c) F = D \times _
d) _ = D \times D
Today’s Class

• Fourier transform and frequency domain
 – Frequency view of filtering
 – Another look at hybrid images
 – Sampling
Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?
Why do we get different, distance-dependent interpretations of hybrid images?
Why does a lower resolution image still make sense to us? What do we lose?
Thinking in terms of frequency
Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

• Don’t believe it?
 – Neither did Lagrange, Laplace, Poisson and other big wigs
 – Not translated into English until 1878!

• But it’s (mostly) true!
 – called Fourier Series
 – there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.
A sum of sines

Our building block:

\[A \sin(\omega x + \phi) \]

Add enough of them to get any signal \(f(x) \) you want!
Frequency Spectra

- example: \(g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t) \)
Frequency Spectra

\[A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt) \]
Example: Music

• We think of music in terms of frequencies at different magnitudes
Other signals

• We can also think of all kinds of other signals the same way
Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html
Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude: \[A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \]

Phase: \[\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)} \]

Euler's formula: \[e^{inx} = \cos(nx) + i \sin(nx) \]
Computing the Fourier Transform

\[H(\omega) = \mathcal{F} \{ h(x) \} = Ae^{j\phi} \]

Continuous

\[H(\omega) = \int_{-\infty}^{\infty} h(x)e^{-j\omega x} \, dx \]

Discrete

\[H(k) = \frac{1}{N} \sum_{x=0}^{N-1} h(x)e^{-j2\pi k x/N} \quad k=-N/2..N/2 \]

Fast Fourier Transform (FFT): NlogN

(options for if you can’t remember this)
The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

\[F[g * h] = F[g] F[h] \]

• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

\[F^{-1}[gh] = F^{-1}[g] * F^{-1}[h] \]

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!
Properties of Fourier Transforms

• Linearity \(F[ax(t) + by(t)] = aF[x(t)] + bF[y(t)] \)

• Fourier transform of a real signal is symmetric about the origin

• The energy of the signal is the same as the energy of its Fourier transform

See Szeliski Book (3.4)
Filtering in spatial domain

\[
\begin{pmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{pmatrix}
\]
Filtering in frequency domain

1. **Intensity Image**
2. **FFT**
3. **Log FT Magnitude**
4. **Multiplication**
5. **Inverse FFT**
6. **Resulting Image**
Fourier Matlab demo
FFT in Matlab

• Filtering with fft

im = ... % “im” should be a gray-scale floating point image
[imh, imw] = size(im);
fftsize = 1024; % should be order of 2 (for speed) and include padding
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding
hs = 30; % filter half-size
fil = fspecial('gaussian', hs*2+1, 10);
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images
im_fil = ifft2(im_fil_fft); % 4) inverse fft2
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding

• Displaying with fft

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet
Questions

Which has more information, the phase or the magnitude?

What happens if you take the phase from one image and combine it with the magnitude from another image?
Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?
Gaussian
Box Filter
Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/
Throw away every other row and column to create a 1/2 size image
Aliasing problem

- 1D example (sinewave):

Source: S. Marschner
Aliasing problem

• 1D example (sinewave):
Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - “Wagon wheels rolling the wrong way in movies”
 - “Checkerboards disintegrate in ray tracing”
 - “Striped shirts look funny on color television”

Source: D. Forsyth
Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)
Aliasing in graphics

Disintegrating textures
Sampling and aliasing
Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{\text{max}}$
- $f_{\text{max}} = \text{max frequency of the input signal}$
- This will allows to reconstruct the original perfectly from the sampled version
Anti-aliasing

Solutions:

• Sample more often

• Get rid of all frequencies that are greater than half the new sampling frequency
 – Will lose information
 – But it’s better than aliasing
 – Apply a smoothing filter
Algorithm for downsampling by factor of 2

1. Start with image\((h, w)\)
2. Apply low-pass filter
 \[
 \text{im_blur} = \text{imfilter}(\text{image}, \text{fspecial(}}'\text{gaussian}', 7, 1))
 \]
3. Sample every other pixel
 \[
 \text{im_small} = \text{im_blur}(1:2:end, 1:2:end);
 \]
Anti-aliasing

Forsyth and Ponce 2002
Subsampling without pre-filtering

1/2
1/4 (2x zoom)
1/8 (4x zoom)
Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Slide by Steve Seitz
Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/
Why do we get different, distance-dependent interpretations of hybrid images?
Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it
Hybrid Image in FFT

Hybrid Image

Low-passed Image + High-passed Image
Why do we get different, distance-dependent interpretations of hybrid images?
Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis

- Can be faster to filter using FFT for large images ($N \log N$ vs. N^2 for auto-correlation)

- Images are mostly smooth
 - Basis for compression

- Remember to low-pass before sampling
Take-home question

1. Match the spatial domain image to the Fourier magnitude image

1.
2.
3.
4.
5.

A

B

C

D

E

9/4/12
Next class

- Denoising
- Template matching
- Image pyramids
Questions