How the Kinect Works

Computational Photography
Derek Hoiem, University of Illinois

Photo frame-grabbed from: http://www.blisteredthumbs.net/2010/11/dance-central-angry-review
Kinect Device

- 3D Depth Sensors
- RGB Camera
- Multi-Array Mic
- Motorized Tilt
Kinect Device

Illustration source: primesense.com
What the Kinect does

Get Depth Image

Application (e.g., game)

Estimate Body Pose
How Kinect Works: Overview

IR Projector

IR Sensor

Projected Light Pattern

Stereo Algorithm

Segmentation, Part Prediction

Depth Image

Body Pose
Part 1: Stereo from projected dots

IR Projector

IR Sensor

Projected Light Pattern

Stereo Algorithm

Segmentation, Part Prediction

Depth Image

Body Pose
Part 1: Stereo from projected dots

1. Overview of depth from stereo

2. How it works for a projector/sensor pair

3. Stereo algorithm used by Primesense (Kinect)
Depth from Stereo Images

image 1

image 2

Dense depth map

Some of following slides adapted from Steve Seitz and Lana Lazebnik
Depth from Stereo Images

- Goal: recover depth by finding image coordinate x' that corresponds to x
Potential matches for x have to lie on the corresponding line l'.

Potential matches for x' have to lie on the corresponding line l.

Stereo and the Epipolar constraint
Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images
Basic stereo matching algorithm

• For each pixel in the first image
 – Find corresponding epipolar line in the right image
 – Examine all pixels on the epipolar line and pick the best match
 – Triangulate the matches to get depth information
Depth from disparity

\[
\frac{x - x'}{O - O'} = \frac{f}{z}
\]

Disparity is inversely proportional to depth.
Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel \(x \) in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match \(x' \)
 - Compute disparity \(x - x' \) and set depth(\(x \)) = \(f_B / (x - x') \)
Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Correspondence search

Left

Right

scanline

 SSD
Correspondence search

Left

Right

scanline

Norm. corr
Results with window search

Data

Window-based matching

Ground truth
Add constraints and solve with graph cuts

For the latest and greatest: http://www.middlebury.edu/stereo/
Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities
Dot Projections

http://www.youtube.com/watch?v=28JwgxbQx8w
Depth from Projector-Sensor

Only one image: How is it possible to get depth?

Diagram:
- Projector
- Sensor
- Scene Surface
Same stereo algorithms apply
Example: Book vs. No Book

Source: http://www.futurepicture.org/?p=97
Example: Book vs. No Book

Source: http://www.futurepicture.org/?p=97
Region-growing Random Dot Matching

1. Detect dots (“speckles”) and label them unknown
2. Randomly select a region anchor, a dot with unknown depth
 a. Windowed search via normalized cross correlation along scanline
 – Check that best match score is greater than threshold; if not, mark as “invalid” and go to 2
 b. Region growing
 1. Neighboring pixels are added to a queue
 2. For each pixel in queue, initialize by anchor’s shift; then search small local neighborhood; if matched, add neighbors to queue
 3. Stop when no pixels are left in the queue
3. Stop when all dots have known depth or are marked “invalid”
Projected IR vs. Natural Light Stereo

• **What are the advantages of IR?**
 – Works in low light conditions
 – Does not rely on having textured objects
 – Not confused by repeated scene textures
 – Can tailor algorithm to produced pattern

• **What are advantages of natural light?**
 – Works outside, anywhere with sufficient light
 – Uses less energy
 – Resolution limited only by sensors, not projector

• **Difficulties with both**
 – Very dark surfaces may not reflect enough light
 – Specular reflection in mirrors or metal causes trouble
Part 2: Pose from depth

IR Projector

IR Sensor

Projected Light Pattern

Stereo Algorithm

Segmentation, Part Prediction

Depth Image

Body Pose
Goal: estimate pose from depth image

Real-Time Human Pose Recognition in Parts from a Single Depth Image
Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, and Andrew Blake
CVPR 2011
Goal: estimate pose from depth image

Challenges

• Lots of variation in bodies, orientation, poses
• Needs to be very fast (their algorithm runs at 200 FPS on the Xbox 360 GPU)
Extract body pixels by thresholding depth
Basic learning approach

• Very simple features

• Lots of data

• Flexible classifier
Get lots of training data

• Capture and sample 500K mocap frames of people kicking, driving, dancing, etc.
• Get 3D models for 15 bodies with a variety of weight, height, etc.
• Synthesize mocap data for all 15 body types
Body models
Features

• Difference of depth at two offsets
 – Offset is scaled by depth at center
Part prediction with random forests

- Randomized decision forests: collection of independently trained trees
- Each tree is a classifier that predicts the likelihood of a pixel belonging to each part
 - Node corresponds to a thresholded feature
 - The leaf node that an example falls into corresponds to a conjunction of several features
 - In training, at each node, a subset of features is chosen randomly, and the most discriminative is selected
Joint estimation

• Joints are estimated using mean-shift (a fast mode-finding algorithm)

• Observed part center is offset by pre-estimated value
Results

Ground Truth
Accuracy vs. Number of Training Examples

![Graph showing accuracy vs. number of training examples. The graph includes lines for synthetic test set, real test set, Silhouette (scale), and Silhouette (no scale). The x-axis represents the number of training images on a log scale, while the y-axis represents the average per-class accuracy.](image-url)
Uses of Kinect

- Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg
- Robot Control: http://www.youtube.com/watch?v=w8BmgtMKFbY
- Capture for holography: http://www.youtube.com/watch?v=4LW8wgmfpTE
- Virtual dressing room: http://www.youtube.com/watch?v=1jbvnk1T4vQ
- Fly wall: http://vimeo.com/user3445108/kiwibankinteractivewall
- 3D Scanner: http://www.youtube.com/watch?v=V7LthXRoESw
To learn more

• Warning: lots of wrong info on web

• Great site by Daniel Reetz:
 http://www.futurepicture.org/?p=97

• Kinect patents:
 http://www.faqs.org/patents/app/20100118123
 http://www.faqs.org/patents/app/20100020078
 http://www.faqs.org/patents/app/20100007717
Next week

• Tues
 – ICES forms (important!)
 – Wrap-up, proj 5 results

• Normal office hours + feel free to stop by other times on Tues, Thurs
 – Try to stop by instead of e-mail except for one-line answer kind of things

• Final project reports due Thursday at midnight

• Friday
 – Final project presentations at 1:30pm
 – If you’re in a jam for final project, let me know early