CS 498ABD: Algorithms for Big Data

Compressed Sensing

Lecture 25
Dec 1, 2022

Sparse recovery

Recall:

- Vector $x \in \mathbb{R}^{\boldsymbol{n}}$ and integer k
- x updated in streaming setting one coordinate at a time (can be positive or negative changes)
- Want to find best k-sparse vector \tilde{x} that approximates x. $\min _{y,\|y\|_{0} \leq k}\|y-x\|_{2}$. Optimum solution is clear: take y to be the largest k coordinates of x in absolute value.
- Using Count-Sketch: $\boldsymbol{O}\left(\frac{k}{\epsilon^{2}}\right.$ polylog(n)) space one can find k-sparse z such that $\|z-x\|_{2} \leq(1+\epsilon)\left\|y^{*}-x\right\|_{2}$ with high probability.
- Count-Sketch can be seen as Πx for some $\Pi \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ where $m=O\left(\frac{k}{\epsilon^{2}} \operatorname{poly} \log (n)\right)$.

Compressed Sensing

Compressed sensing: we want to create projection matrix Π such that for any x we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(k \log (n / k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.

Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix $\Pi \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ with $\boldsymbol{m}=\boldsymbol{O}(\boldsymbol{k} \log (\boldsymbol{n} / \boldsymbol{k}))$ and a polytime algorithm such that for any $x \in \mathbb{R}^{\boldsymbol{n}}$, the algorithm given Π_{x} outputs a k-sparse vector \tilde{x} such that $\|\tilde{x}-x\|_{2} \leq O\left(\frac{1}{\sqrt{k}}\right)\left\|x_{\text {tail }(k)}\right\|_{1}$. In particular it recovers x exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices (restricted isometry property)

Closely connected to JL matrices

Understanding RIP matrices

Suppose x, x^{\prime} are two distinct k-sparse vectors in $\mathbb{R}^{\boldsymbol{n}}$
Basic requirement: $\Pi x \neq \Pi x^{\prime}$ otherwise cannot recover exactly
Let $S, S^{\prime} \subset[n]$ be the indices in the support of x, x^{\prime} respectively. Πx is in the span of columns of Π_{S} and Πx^{\prime} is in the span of columns of $\Pi_{S^{\prime}}$

Thus we need columns of $\Pi_{\boldsymbol{S} \cup \boldsymbol{S}^{\prime}}$ to be linearly independent for any S, S^{\prime} with $S \neq S^{\prime}$ and $|S| \leq k$ and $\left|S^{\prime}\right| \leq k$. Any $2 k$ columns of Π should be linearly independent.

Understanding RIP matrices

Suppose x, x^{\prime} are two distinct k-sparse vectors in $\mathbb{R}^{\boldsymbol{n}}$
Basic requirement: $\Pi x \neq \Pi x^{\prime}$ otherwise cannot recover exactly
Let $S, S^{\prime} \subset[n]$ be the indices in the support of x, x^{\prime} respectively. Πx is in the span of columns of Π_{S} and Πx^{\prime} is in the span of columns of $\Pi_{S^{\prime}}$

Thus we need columns of $\Pi_{\boldsymbol{S} \cup \boldsymbol{S}^{\prime}}$ to be linearly independent for any S, S^{\prime} with $S \neq S^{\prime}$ and $|S| \leq k$ and $\left|S^{\prime}\right| \leq k$. Any $2 k$ columns of Π should be linearly independent.

Sufficient information theoretically. Computationally?

Recovery

Suppose we have Π such that any $2 \boldsymbol{k}$ columns are linearly independent.

Suppose x is k-sparse and we have Πx. How do we recover x ?
Solve the following:

$$
\min \|z\|_{0} \quad \text { such that } \quad \Pi z=\Pi x
$$

Recovery

Suppose we have Π such that any $2 \boldsymbol{k}$ columns are linearly independent.

Suppose x is k-sparse and we have Πx. How do we recover x ?
Solve the following:

$$
\min \|z\|_{0} \quad \text { such that } \quad \Pi z=\Pi x
$$

Guaranteed to recover x by uniqueness but NP-Hard!

Recovery

Instead of solving

$$
\min \|z\|_{0} \text { such that } \Pi z=\Pi x
$$

solve

$$
\min \|z\|_{1} \quad \text { such that } \quad \Pi z=\Pi x
$$

which is a linear/convex programming problem and hence can be solved in polynomial-time.

If Π satisfies additional properties then one can show that above recovers \boldsymbol{x}.

RIP Property

Definition

A $\boldsymbol{m} \times \boldsymbol{n}$ matrix Π has the $(\boldsymbol{\epsilon}, \boldsymbol{k})$-RIP property if for every \boldsymbol{k}-sparse $x \in \mathbb{R}^{n}$,

$$
(1-\boldsymbol{\epsilon})\|x\|_{2}^{2} \leq\|\Pi x\|_{2}^{2} \leq(1+\boldsymbol{\epsilon})\|x\|_{2}^{2}
$$

Equivalent, whenever $|S| \leq k$ we have

$$
\left\|\Pi_{S}^{T} \Pi_{S}-I_{k}\right\|_{2} \leq \epsilon
$$

which is equivalent to saying that if σ_{1} and σ_{k} are the largest and smallest singular value of Π_{S} then $\frac{\sigma_{1}^{2}}{\sigma_{k}^{2}} \leq(1+\boldsymbol{\epsilon})$

Every \boldsymbol{k} columns of Π are approximately orthonormal.

Recovery theorem

Suppose Π is $(\epsilon, 2 k)$-RIP with $\epsilon<\sqrt{2}-1$ and let \tilde{x} be optimum solution to the following LP

$$
\min \|z\|_{1} \quad \text { such that } \quad \Pi z=\Pi x
$$

Then $\|\tilde{x}-x\|_{2} \leq O\left(\frac{1}{\sqrt{k}}\right)\left\|x_{\text {tail }(k)}\right\|_{1}$.
Called ℓ_{2} / ℓ_{1} guarantee. Proof is somewhat similar to the one for sparse recovery with Count-Sketch.

More efficient "combinatorial" algorithms that avoid solving LP.

RIP matrices and subspace embeddings

Definition

A $\boldsymbol{m} \times \boldsymbol{n}$ matrix Π has the $(\epsilon, \boldsymbol{k})$-RIP property if for every \boldsymbol{k}-sparse $x \in \mathbb{R}^{n}$,

$$
(1-\epsilon)\|x\|_{2}^{2} \leq\|\Pi x\|_{2}^{2} \leq(1+\epsilon)\|x\|_{2}^{2}
$$

Fix $S \subset[\boldsymbol{n}]$ with $|\boldsymbol{S}|=\boldsymbol{k} . \boldsymbol{S}$ defines a subspace of \boldsymbol{k}-sparse vectors.
Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Fix $S \subset[\boldsymbol{n}]$ with $|\boldsymbol{S}|=\boldsymbol{k} . \boldsymbol{S}$ defines a subspace of \boldsymbol{k}-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace \boldsymbol{W} of dimension \boldsymbol{d} we saw that if Π is JL matrix with $\boldsymbol{m}=\boldsymbol{O}\left(\boldsymbol{d} / \boldsymbol{\epsilon}^{2}\right)$ rows we have the property that for every $x \in W:\|\Pi x\|_{2}^{2} \simeq(1 \pm \boldsymbol{\epsilon})\|x\|_{2}^{2}$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{\boldsymbol{n}}{\boldsymbol{k}}$ different subspaces need to preserve nets of all subspaces

Hence via union bound we get $\boldsymbol{m}=\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \left(\boldsymbol{e}^{\boldsymbol{O (k)}}\binom{\boldsymbol{n}}{k}\right)\right)$ which is $O\left(\frac{k}{\epsilon^{2}} \log n\right)$.

Fix $S \subset[\boldsymbol{n}]$ with $|\boldsymbol{S}|=\boldsymbol{k} . \boldsymbol{S}$ defines a subspace of \boldsymbol{k}-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace \boldsymbol{W} of dimension \boldsymbol{d} we saw that if Π is JL matrix with $\boldsymbol{m}=\boldsymbol{O}\left(\boldsymbol{d} / \boldsymbol{\epsilon}^{2}\right)$ rows we have the property that for every $x \in W:\|\Pi x\|_{2}^{2} \simeq(1 \pm \epsilon)\|x\|_{2}^{2}$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{\boldsymbol{n}}{\boldsymbol{k}}$ different subspaces need to preserve nets of all subspaces

Hence via union bound we get $\boldsymbol{m}=\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \left(\boldsymbol{e}^{\boldsymbol{O (k})}\binom{\boldsymbol{n}}{\boldsymbol{k}}\right)\right)$ which is $\boldsymbol{O}\left(\frac{k}{\epsilon^{2}} \log n\right)$.

Other techniques give $\boldsymbol{m}=\boldsymbol{O}\left(\boldsymbol{k}^{2} / \epsilon^{2}\right)$.

