Compressed Sensing

Lecture 25
Dec 1, 2022
Sparse recovery

Recall:

- Vector $x \in \mathbb{R}^n$ and integer k
- x updated in streaming setting one coordinate at a time (can be positive or negative changes)
- Want to find best k-sparse vector \tilde{x} that approximates x.
 \[\min_{y, \|y\|_0 \leq k} \| y - x \|_2. \]
 Optimum solution is clear: take y to be the largest k coordinates of x in absolute value.
- Using Count-Sketch: $O\left(\frac{k}{\epsilon^2 \text{polylog}(n)}\right)$ space one can find k-sparse z such that $\| z - x \|_2 \leq (1 + \epsilon)\| y^* - x \|_2$ with high probability.
- Count-Sketch can be seen as Πx for some $\Pi \in \mathbb{R}^{m \times n}$ where $m = O\left(\frac{k}{\epsilon^2 \text{polylog}(n)}\right)$.
Compressed Sensing

Compressed sensing: we want to create projection matrix Π such that for *any* x we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(k \log(n/k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.
Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix $\Pi \in \mathbb{R}^{m \times n}$ with $m = O(k \log(n/k))$ and a polytime algorithm such that for any $x \in \mathbb{R}^n$, the algorithm given Πx outputs a k-sparse vector \tilde{x} such that $\|\tilde{x} - x\|_2 \leq O\left(\frac{1}{\sqrt{k}}\right)\|x_{\text{tail}(k)}\|_1$. In particular it recovers x exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices (restricted isometry property)

Closely connected to JL matrices
Understanding RIP matrices

Suppose \(x, x' \) are two distinct \(k \)-sparse vectors in \(\mathbb{R}^n \)

Basic requirement: \(\Pi x \neq \Pi x' \) otherwise cannot recover exactly

Let \(S, S' \subset [n] \) be the indices in the support of \(x, x' \) respectively. \(\Pi x \) is in the span of columns of \(\Pi_S \) and \(\Pi x' \) is in the span of columns of \(\Pi_{S'} \)

Thus we need columns of \(\Pi_{S \cup S'} \) to be linearly independent for any \(S, S' \) with \(S \neq S' \) and \(|S| \leq k \) and \(|S'| \leq k \). Any \(2k \) columns of \(\Pi \) should be linearly independent.
Understanding RIP matrices

Suppose x, x' are two distinct k-sparse vectors in \mathbb{R}^n

Basic requirement: $\Pi x \neq \Pi x'$ otherwise cannot recover exactly

Let $S, S' \subset [n]$ be the indices in the support of x, x' respectively. Πx is in the span of columns of Π_S and $\Pi x'$ is in the span of columns of $\Pi_{S'}$.

Thus we need columns of $\Pi_{S \cup S'}$ to be linearly independent for any S, S' with $S \neq S'$ and $|S| \leq k$ and $|S'| \leq k$. Any $2k$ columns of Π should be linearly independent.

Sufficient information theoretically. Computationally?
Recovery

Suppose we have Π such that any $2k$ columns are linearly independent.

Suppose x is k-sparse and we have Πx. How do we recover x?

Solve the following:

$$\min \|z\|_0 \quad \text{such that} \quad \Pi z = \Pi x$$

Guaranteed to recover x by uniqueness but NP-Hard!
Suppose we have Π such that any $2k$ columns are linearly independent.

Suppose x is k-sparse and we have Πx. How do we recover x?

Solve the following:

$$\min \|z\|_0 \text{ such that } \Pi z = \Pi x$$

Guaranteed to recover x by uniqueness but NP-Hard!
Recovery

Instead of solving

\[
\min \| z \|_0 \quad \text{such that} \quad \Pi z = \Pi x
\]

solve

\[
\min \| z \|_1 \quad \text{such that} \quad \Pi z = \Pi x
\]

which is a linear/convex programming problem and hence can be solved in polynomial-time.

If \(\Pi \) satisfies additional properties then one can show that above recovers \(x \).
RIP Property

Definition

A \(m \times n \) matrix \(\Pi \) has the \((\epsilon, k)\)-RIP property if for every \(k \)-sparse \(x \in \mathbb{R}^n \),

\[
(1 - \epsilon) \|x\|_2^2 \leq \|\Pi x\|_2^2 \leq (1 + \epsilon) \|x\|_2^2
\]

Equivalent, whenever \(|S| \leq k\) we have

\[
\|\Pi^T_S \Pi_S - I_k\|_2 \leq \epsilon
\]

which is equivalent to saying that if \(\sigma_1 \) and \(\sigma_k \) are the largest and smallest singular value of \(\Pi_S \) then

\[
\frac{\sigma_1^2}{\sigma_k^2} \leq (1 + \epsilon)
\]

Every \(k \) columns of \(\Pi \) are approximately orthonormal.
Recovery theorem

Suppose Π is $(\epsilon, 2k)$-RIP with $\epsilon < \sqrt{2} - 1$ and let \tilde{x} be optimum solution to the following LP

$$\min ||z||_1 \text{ such that } \Pi z = \Pi x$$

Then $||\tilde{x} - x||_2 \leq O\left(\frac{1}{\sqrt{k}}\right)||x_{\text{tail}(k)}||_1$.

Called ℓ_2/ℓ_1 guarantee. Proof is somewhat similar to the one for sparse recovery with Count-Sketch.

More efficient “combinatorial” algorithms that avoid solving LP.
RIP matrices and subspace embeddings

Definition

A $m \times n$ matrix Π has the (ϵ, k)-RIP property if for every k-sparse $x \in \mathbb{R}^n$,

$$(1 - \epsilon)\|x\|_2^2 \leq \|\Pi x\|_2^2 \leq (1 + \epsilon)\|x\|_2^2.$$

Fix $S \subset [n]$ with $|S| = k$. S defines a subspace of k-sparse vectors.

Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.
Fix $S \subset [n]$ with $|S| = k$. S defines a subspace of k-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace \mathcal{W} of dimension d we saw that if Π is JL matrix with $m = O(d/\epsilon^2)$ rows we have the property that for every $x \in \mathcal{W}$: $\|\Pi x\|_2^2 \simeq (1 \pm \epsilon)\|x\|_2^2$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{n}{k}$ different subspaces need to preserve nets of all subspaces.

Hence via union bound we get $m = O\left(\frac{1}{\epsilon^2} \log\left(e^{O(k)}\binom{n}{k}\right)\right)$ which is $O\left(\frac{k}{\epsilon^2} \log n\right)$.
Fix $S \subset [n]$ with $|S| = k$. S defines a subspace of k-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix with $m = O(d/\epsilon^2)$ rows we have the property that for every $x \in W$: $\|\Pi x\|_2^2 \simeq (1 \pm \epsilon)\|x\|_2^2$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{n}{k}$ different subspaces need to preserve nets of all subspaces

Hence via union bound we get $m = O\left(\frac{1}{\epsilon^2} \log(e^{O(k)}\binom{n}{k})\right)$ which is $O\left(\frac{k}{\epsilon^2} \log n\right)$.

Other techniques give $m = O(k^2/\epsilon^2)$.