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Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of
original data

Sampling

Sketching

Dimensionality reduction (JL, Subspacee embeddings)

Streaming summaries

· · ·

Today: Coresets a technique from computational geometry
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Coresets

P : a collection of n points in Rd

Want to compute some function f (P)

k-cluster P according to some objective (k-means, k-median,
k-center etc)

find smallest radius ball that encloses P

Coreset: Q s.t. |Q| small and f (Q) ' f (P)

Depends on f
Ideally, Q should be computable quickly

Originally Q ⊂ P (or a weighted subset) and hence name coreset
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Part I

Minimum Enclosing Ball
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Minimum Enclosing Ball

Given n points P ∈ Rd find smallest radius ball B(x, r) that
P ⊆ B(x, r)

Exact computation is difficult especially when d is large. Can reduce
to convex quadratic optimization leading to arbitrarily good
approximation.

Theorem

For any P ∈ Rd there is a set Q ⊆ P such that |Q| ≤ 2/ε and
MEB of Q is a 1

1+ε
approximation to MEB of P .

Q is an ε-coreset for P .

No dependence on n or d ! Differs from sampling/sketching
approaches
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MEB Algorithm

MEB-Coreset:
S1 ← {arbitrary p ∈ P}
for i = 2 to T do

ci ← MEB center of Si−1

pi ← arg maxp∈P d (p, ci )
Si = Si−1 ∪ {p}

end for

Output ST

Claim: If T = 2/ε then ST is an ε-coreset for P .
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Analysis: basic lemma about MEB

Lemma

Suppose MEB of P is defined by center c and radius R. Then for
every closed half space H containing c there is a point p ∈ P ∩ H
such that d(p, c) = R.

Proof by contradiction: if not true, for some δ > 0,
d(p, c) ≤ R − δ for all p ∈ P ∩ H (using closedness here).
Consider ball of radius R around c . Shifting ball by δ/2 orthogonal
to H will create new ball with all points in P strictly contained inside
it. Implies we can shrink ball contradicting the optimality of R.
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Analysis of coreset algorithm

ci MEB center of Si and ri radius for Si .

Let R be optimum radius for P . We have ri ≤ R for all i since
Si ⊆ P . Also ri+1 ≥ ri for all i since Si ⊆ Si+1.

Observation: Let q ∈ P \ Si be farthest point from ci . If
d(ci , q) = ri then R ≤ ri which implies ri = R.

Hence interesting case is when d(ci , q) > ri . Which implies
ri+1 > ri . How much bigger does ri+1 get?

Define λi = ri
R .
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Analysis of coreset algorithm

Lemma

Either ri = R or λi+1 ≥
1+λ2

i
2

.

Assuming lemma and solving recurrence, λi ≥ (1− 1

1+ i
2

). Thus, if

T = 2/ε, λT ≥ 1
1+ε

.
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Proof of Lemma

Exists q ∈ P \ Si such that d(ci , q) > R. Let δi = d(ci+1, ci ) be
amount that center moves. δi > 0 since d(ci , q) > R.

Two lower bounds on ri+1

By triangle inequality between ci , ci+1, q we have
d(ci , ci+1) + d(ci+1, q) ≥ d(ci , q) which implies that
δi + ri+1 ≥ R and hence ri+1 ≥ R − δi .

Consider closed half space H containing ci orthogonal to line
segement connecting ci and ci+1 (and not containing ci+1). By
basic lemma there exists p ∈ Si such that d(ci , p) = ri .
Implies ri+1 ≥ d(ci+1, p) ≥

√
r 2i + δ2i .

Therefore λi+1 = ri+1

R ≥
1
R max(R − δi ,

√
r 2i + δ2i ).
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Proof of Lemma

λi+1 =
ri+1

R
≥

1

R
max

{
R − δi ,

√
r 2i + δ2i

}
Minimized when R − δi =

√
r 2i + δ2i =

√
λ2

i R2 + δ2i which is when

δi =
(1−λ2

i )R
2

.

Thus

λi+1 =
ri+1

R
≥

R − (1−λ2
i )R

2

R
≥

1 + λ2
i

2

which finishes the proof.
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Streaming Coresets

Suppose p1, p2, . . . , pn come in a stream. Can we compute a small
coreset for P?

Can use Merge and Reduce approach for MEB to maintain an

ε-coreset storing O( log2 n
ε

) points
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Part II

Clustering
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Clustering

Given n objects/items P and integer k find partition of P into k
clusters C1, . . . ,Ck of similar items

Huge topic with many approaches based on domain/application

Center based metric-space clustering:

(P, d) is metric space. d(p, q) is distance between p and q
find centers S = {c1, c2, . . . , ck} such that
Ci = {p ∈ P : ci is closest center to p}.
different objectives define different optimization problems:
k-median, k-means, k-center etc

choice of centers: S ⊂ P or S can be in ambient space if
P ∈ Rd . Typically within factor of 2 in objective but clustering
quality and algorithmic difficulty can be different.
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k-median, k-means, k-center

Given P and k find k centers S such that

k-median: minimize
∑

p∈P d(p, S)

k-means: minimize
∑

p∈P(d(p, S))2

k-center: minimize maxp∈P d(p, S)

spacial cases of `p clustering: minimze
∑

p∈P(d(p, S))p for
some p ≥ 1.
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Coresets for Clustering

Given P, k and ε find weighted point set Q such that clustering cost
of Q is ε-approximation to that of P .

Two techniques:

In geometric settings of low dimension via gridding techniques
[HarPeled-Mazumdar]

Higher dimensions and metric spaces [Chen, Feldman-Langberg]
and many others using importance sampling

Many results including very recent work: size of coreset, running time
to build coreset, dependence on d vs k , etc etc
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Coresets for Clustering

Given P, k and ε find weighted point set Q such that clustering cost
of Q is ε-approximation to that of P .

Some known results:

O(poly(k, log n, 1/ε) for a ε-approximate core set for k-median
and k-means in general metric spaces [Chen’09]

O(kd/ε2) for points in Rd [Feldman-Langberg’11]

O(poly(k, 1/ε)) independent of dimension
[Feldman-Schmidt-Sohler’13, Sohler-Woodruff’19]

Dimension reduction to O(k log k/ε2) dimensions
[Makarychev-Makarychev-Razenshteyn’19]
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Importance Sampling for Coresets

High-level idea: Start with a crude approximation and use it for
sampling [Chen]. Refined substantially later [Feldman-Langberg] and
follow up work.

(α, β)-bicriteria-approximation for k-clustering:

centers S such that |S| ≤ αk
cost(S,P) ≤ β · cost(S∗,P) where S∗ is an optimal center set

Here α, β ≥ 1. Both # of centers and cost approximate

Computing (α, β)-approximation fast is possible using various ideas.
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Coresets for k-median

Suppose S is an (α, β)-bicriteria-approximation for k-median
S = {c1, c2, . . . , ch} partitions P into P1, . . . ,Ph

cost(S,P) =
∑h

i=1 cost(ci ,Pi )

Intuitively treat as h separate 1-median problems.

Consider c1 and P1. cost(c1,P1) =
∑

p∈P1
d(p, c1) Hence sample

a point p ∈ Pi with probability d(p, c1)/cost(c1,P1). Take several
samples to control variance etc.

Actual scheme and analysis more tricky. Have to argue that sampling
is good for potentially

(n
k

)
clusterings; coreset size becomes

poly(k, log n). Geometry/VC-Dimension analysis to avoid
dependence on n and reduce to d . Can change d to k via
dimensionality reduction (not easy).
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