CS 498ABD: Algorithms for Big Data

Coresets

Lecture 25
Dec 1, 2022

Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of original data

- Sampling
- Sketching
- Dimensionality reduction (JL, Subspacee embeddings)
- Streaming summaries

Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of original data

- Sampling
- Sketching
- Dimensionality reduction (JL, Subspacee embeddings)
- Streaming summaries
- . .

Today: Coresets a technique from computational geometry

Coresets

\mathcal{P} : a collection of \boldsymbol{n} points in $\mathbb{R}^{\boldsymbol{d}}$

Want to compute some function $f(\mathcal{P})$

- \boldsymbol{k}-cluster \mathcal{P} according to some objective (\boldsymbol{k}-means, \boldsymbol{k}-median, \boldsymbol{k}-center etc)
- find smallest radius ball that encloses \mathcal{P}

Coresets

\mathcal{P} : a collection of \boldsymbol{n} points in $\mathbb{R}^{\boldsymbol{d}}$
Want to compute some function $\boldsymbol{f}(\mathcal{P})$

- \boldsymbol{k}-cluster \mathcal{P} according to some objective (\boldsymbol{k}-means, \boldsymbol{k}-median, k-center etc)
- find smallest radius ball that encloses \mathcal{P}

Coreset: \mathcal{Q} s.t. $|\mathcal{Q}|$ small and $f(\mathcal{Q}) \simeq f(\mathcal{P})$

- Depends on f
- Ideally, \mathcal{Q} should be computable quickly

Coresets

\mathcal{P} : a collection of \boldsymbol{n} points in $\mathbb{R}^{\boldsymbol{d}}$
Want to compute some function $\boldsymbol{f}(\mathcal{P})$

- \boldsymbol{k}-cluster \mathcal{P} according to some objective (\boldsymbol{k}-means, \boldsymbol{k}-median, k-center etc)
- find smallest radius ball that encloses \mathcal{P}

Coreset: \mathcal{Q} s.t. $|\mathcal{Q}|$ small and $f(\mathcal{Q}) \simeq f(\mathcal{P})$

- Depends on f
- Ideally, \mathcal{Q} should be computable quickly

Originally $\mathcal{Q} \subset \mathcal{P}$ (or a weighted subset) and hence name coreset

Part I

Minimum Enclosing Ball

Minimum Enclosing Ball

Given n points $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ find smallest radius ball $B(x, r)$ that $\mathcal{P} \subseteq B(x, r)$

Minimum Enclosing Ball

Given n points $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ find smallest radius ball $B(x, r)$ that $\mathcal{P} \subseteq B(x, r)$

Exact computation is difficult especially when \boldsymbol{d} is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Minimum Enclosing Ball

Given n points $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ find smallest radius ball $B(x, r)$ that $\mathcal{P} \subseteq B(x, r)$

Exact computation is difficult especially when \boldsymbol{d} is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Theorem

For any $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ there is a set $\mathcal{Q} \subseteq \mathcal{P}$ such that $|\mathcal{Q}| \leq 2 / \epsilon$ and MEB of \mathcal{Q} is a $\frac{1}{1+\epsilon}$ approximation to MEB of \mathcal{P}.
\mathcal{Q} is an ϵ-coreset for \mathcal{P}.

Minimum Enclosing Ball

Given n points $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ find smallest radius ball $B(x, r)$ that $\mathcal{P} \subseteq B(x, r)$

Exact computation is difficult especially when \boldsymbol{d} is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Theorem

For any $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$ there is a set $\mathcal{Q} \subseteq \mathcal{P}$ such that $|\mathcal{Q}| \leq 2 / \epsilon$ and MEB of \mathcal{Q} is a $\frac{1}{1+\epsilon}$ approximation to MEB of \mathcal{P}.
\mathcal{Q} is an ϵ-coreset for \mathcal{P}.
No dependence on \boldsymbol{n} or \boldsymbol{d} ! Differs from sampling/sketching approaches

MEB Algorithm

```
MEB-Coreset:
    S
    for }\boldsymbol{i}=2\mathrm{ to }\boldsymbol{T}\mathrm{ do
    ci}\leftarrowMMEB center of Si-1
    \mp@subsup{\boldsymbol{p}}{\boldsymbol{i}}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{max}}{\boldsymbol{p}\in\mathcal{P}}{}\boldsymbol{d}(\boldsymbol{p},\mp@subsup{\boldsymbol{c}}{\boldsymbol{i}}{})
        Si= Si-1 \cup{p}
    end for
    Output ST
```


MEB Algorithm

```
MEB-Coreset:
    S
    for i=2 to }\boldsymbol{T}\mathrm{ do
        ci}\leftarrowMMEB center of Si-1
        \mp@subsup{\boldsymbol{p}}{\boldsymbol{i}}{}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{max}}{\boldsymbol{p}\in\mathcal{P}}{}\boldsymbol{d}(\boldsymbol{p},\mp@subsup{\boldsymbol{c}}{\boldsymbol{i}}{})
        Si= Si-1 \cup{p}
    end for
    Output ST
```

Claim: If $\boldsymbol{T}=2 / \boldsymbol{\epsilon}$ then $\boldsymbol{S}_{\boldsymbol{T}}$ is an $\boldsymbol{\epsilon}$-coreset for \mathcal{P}.

Analysis: basic lemma about MEB

Lemma

Suppose MEB of \mathcal{P} is defined by center \boldsymbol{c} and radius \boldsymbol{R}. Then for every closed half space \boldsymbol{H} containing \boldsymbol{c} there is a point $\boldsymbol{p} \in \mathcal{P} \cap H$ such that $d(p, c)=R$.

Analysis: basic lemma about MEB

Lemma

Suppose MEB of \mathcal{P} is defined by center \boldsymbol{c} and radius \boldsymbol{R}. Then for every closed half space \boldsymbol{H} containing \boldsymbol{c} there is a point $\boldsymbol{p} \in \mathcal{P} \cap \boldsymbol{H}$ such that $\boldsymbol{d}(p, c)=R$.

Proof by contradiction: if not true, for some $\delta>0$, $\boldsymbol{d}(p, c) \leq R-\delta$ for all $p \in \mathcal{P} \cap \boldsymbol{H}$ (using closedness here).
Consider ball of radius R around c. Shifting ball by $\delta / 2$ orthogonal to H will create new ball with all points in \mathcal{P} strictly contained inside it. Implies we can shrink ball contradicting the optimality of \boldsymbol{R}.

Analysis of coreset algorithm

c_{i} MEB center of S_{i} and r_{i} radius for S_{i}.
Let R be optimum radius for \mathcal{P}. We have $r_{i} \leq R$ for all i since $S_{i} \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_{i}$ for all i since $S_{i} \subseteq S_{i+1}$.

Analysis of coreset algorithm

c_{i} MEB center of S_{i} and r_{i} radius for S_{i}.
Let R be optimum radius for \mathcal{P}. We have $r_{i} \leq R$ for all i since $S_{i} \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_{i}$ for all i since $S_{i} \subseteq S_{i+1}$.

Observation: Let $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ be farthest point from $\boldsymbol{c}_{\boldsymbol{i}}$. If $d\left(c_{i}, q\right)=r_{i}$ then $R \leq r_{i}$ which implies $r_{i}=R$.

Analysis of coreset algorithm

c_{i} MEB center of S_{i} and r_{i} radius for S_{i}.
Let R be optimum radius for \mathcal{P}. We have $r_{i} \leq R$ for all i since $S_{i} \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_{i}$ for all i since $S_{i} \subseteq S_{i+1}$.

Observation: Let $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ be farthest point from $\boldsymbol{c}_{\boldsymbol{i}}$. If $d\left(c_{i}, q\right)=r_{i}$ then $R \leq r_{i}$ which implies $r_{i}=R$.

Hence interesting case is when $\boldsymbol{d}\left(c_{i}, \boldsymbol{q}\right)>\boldsymbol{r}_{\boldsymbol{i}}$. Which implies $\boldsymbol{r}_{\boldsymbol{i}+1}>\boldsymbol{r}_{\boldsymbol{i}}$. How much bigger does $\boldsymbol{r}_{\boldsymbol{i}+1}$ get?

Define $\boldsymbol{\lambda}_{\boldsymbol{i}}=\frac{r_{i}}{\boldsymbol{R}}$.

Analysis of coreset algorithm

Lemma

Either $\boldsymbol{r}_{\boldsymbol{i}}=\boldsymbol{R}$ or $\boldsymbol{\lambda}_{\boldsymbol{i}+1} \geq \frac{1+\boldsymbol{\lambda}_{i}^{2}}{2}$.

Assuming lemma and solving recurrence, $\boldsymbol{\lambda}_{\boldsymbol{i}} \geq\left(1-\frac{1}{1+\frac{i}{2}}\right)$. Thus, if $\boldsymbol{T}=2 / \boldsymbol{\epsilon}, \boldsymbol{\lambda}_{\boldsymbol{T}} \geq \frac{1}{1+\boldsymbol{\epsilon}}$.

Proof of Lemma

Exists $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ such that $\boldsymbol{d}\left(c_{i}, q\right)>R$. Let $\delta_{i}=\boldsymbol{d}\left(c_{i+1}, c_{i}\right)$ be amount that center moves. $\delta_{i}>0$ since $d\left(c_{i}, q\right)>R$.

Proof of Lemma

Exists $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ such that $\boldsymbol{d}\left(c_{i}, \boldsymbol{q}\right)>\boldsymbol{R}$. Let $\delta_{i}=\boldsymbol{d}\left(c_{i+1}, c_{i}\right)$ be amount that center moves. $\delta_{i}>0$ since $d\left(c_{i}, q\right)>R$.

Two lower bounds on \boldsymbol{r}_{i+1}

- By triangle inequality between $\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}$ we have $\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}\right)+\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}\right) \geq \boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{q}\right)$ which implies that $\delta_{i}+r_{i+1} \geq R$ and hence $r_{i+1} \geq R-\delta_{i}$.

Proof of Lemma

Exists $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ such that $\boldsymbol{d}\left(c_{i}, \boldsymbol{q}\right)>\boldsymbol{R}$. Let $\delta_{i}=\boldsymbol{d}\left(c_{i+1}, c_{i}\right)$ be amount that center moves. $\delta_{i}>0$ since $d\left(c_{i}, q\right)>R$.

Two lower bounds on r_{i+1}

- By triangle inequality between $\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}$ we have $\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}\right)+\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}\right) \geq \boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{q}\right)$ which implies that $\delta_{i}+r_{i+1} \geq R$ and hence $r_{i+1} \geq R-\delta_{i}$.
- Consider closed half space \boldsymbol{H} containing $\boldsymbol{c}_{\boldsymbol{i}}$ orthogonal to line segement connecting $\boldsymbol{c}_{\boldsymbol{i}}$ and $\boldsymbol{c}_{\boldsymbol{i}+1}$ (and not containing $\boldsymbol{c}_{\boldsymbol{i}+1}$). By basic lemma there exists $p \in S_{i}$ such that $d\left(c_{i}, p\right)=r_{i}$. Implies $r_{i+1} \geq d\left(c_{i+1}, p\right) \geq \sqrt{r_{i}^{2}+\delta_{i}^{2}}$.

Proof of Lemma

Exists $\boldsymbol{q} \in \mathcal{P} \backslash S_{i}$ such that $\boldsymbol{d}\left(c_{i}, q\right)>R$. Let $\delta_{i}=\boldsymbol{d}\left(c_{i+1}, c_{i}\right)$ be amount that center moves. $\delta_{i}>0$ since $d\left(c_{i}, q\right)>R$.

Two lower bounds on r_{i+1}

- By triangle inequality between $\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}$ we have $\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{c}_{\boldsymbol{i}+1}\right)+\boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}+1}, \boldsymbol{q}\right) \geq \boldsymbol{d}\left(\boldsymbol{c}_{\boldsymbol{i}}, \boldsymbol{q}\right)$ which implies that $\delta_{i}+r_{i+1} \geq R$ and hence $r_{i+1} \geq R-\delta_{i}$.
- Consider closed half space \boldsymbol{H} containing $\boldsymbol{c}_{\boldsymbol{i}}$ orthogonal to line segement connecting $\boldsymbol{c}_{\boldsymbol{i}}$ and $\boldsymbol{c}_{\boldsymbol{i}+1}$ (and not containing $\boldsymbol{c}_{\boldsymbol{i}+1}$). By basic lemma there exists $p \in S_{i}$ such that $d\left(c_{i}, p\right)=r_{i}$. Implies $r_{i+1} \geq \boldsymbol{d}\left(c_{i+1}, p\right) \geq \sqrt{r_{i}^{2}+\delta_{i}^{2}}$.
Therefore $\lambda_{i+1}=\frac{r_{i+1}}{R} \geq \frac{1}{R} \max \left(R-\delta_{i}, \sqrt{r_{i}^{2}+\delta_{i}^{2}}\right)$.

Proof of Lemma

$$
\lambda_{i+1}=\frac{r_{i+1}}{R} \geq \frac{1}{R} \max \left\{R-\delta_{i}, \sqrt{r_{i}^{2}+\delta_{i}^{2}}\right\}
$$

Minimized when $R-\delta_{i}=\sqrt{r_{i}^{2}+\delta_{i}^{2}}=\sqrt{\lambda_{i}^{2} R^{2}+\delta_{i}^{2}}$ which is when $\boldsymbol{\delta}_{\boldsymbol{i}}=\frac{\left(1-\lambda_{i}^{2}\right) R}{2}$.

Proof of Lemma

$$
\lambda_{i+1}=\frac{r_{i+1}}{R} \geq \frac{1}{R} \max \left\{R-\delta_{i}, \sqrt{r_{i}^{2}+\delta_{i}^{2}}\right\}
$$

Minimized when $R-\delta_{i}=\sqrt{r_{i}^{2}+\delta_{i}^{2}}=\sqrt{\lambda_{i}^{2} R^{2}+\delta_{i}^{2}}$ which is when $\delta_{i}=\frac{\left(1-\lambda_{i}^{2}\right) R}{2}$.

Thus

$$
\lambda_{i+1}=\frac{r_{i+1}}{R} \geq \frac{R-\frac{\left(1-\lambda_{i}^{2}\right) R}{2}}{R} \geq \frac{1+\lambda_{i}^{2}}{2}
$$

which finishes the proof.

Streaming Coresets

Suppose $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ come in a stream. Can we compute a small coreset for \mathcal{P} ?

Streaming Coresets

Suppose $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ come in a stream. Can we compute a small coreset for \mathcal{P} ?

Can use Merge and Reduce approach for MEB to maintain an ϵ-coreset storing $O\left(\frac{\log ^{2} n}{\epsilon}\right)$ points

Part II

Clustering

Clustering

Given \boldsymbol{n} objects/items \mathcal{P} and integer \boldsymbol{k} find partition of \mathcal{P} into \boldsymbol{k} clusters C_{1}, \ldots, C_{k} of similar items

Huge topic with many approaches based on domain/application

Center based metric-space clustering:

- $(\mathcal{P}, \boldsymbol{d})$ is metric space. $\boldsymbol{d}(\boldsymbol{p}, \boldsymbol{q})$ is distance between \boldsymbol{p} and \boldsymbol{q}
- find centers $S=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ such that $C_{i}=\left\{p \in \mathcal{P}: c_{i}\right.$ is closest center to $\left.p\right\}$.
- different objectives define different optimization problems:
\boldsymbol{k}-median, \boldsymbol{k}-means, \boldsymbol{k}-center etc
- choice of centers: $S \subset \mathcal{P}$ or S can be in ambient space if $\mathcal{P} \in \mathbb{R}^{\boldsymbol{d}}$. Typically within factor of 2 in objective but clustering quality and algorithmic difficulty can be different.

k-median, k-means, k-center

Given \mathcal{P} and \boldsymbol{k} find \boldsymbol{k} centers \boldsymbol{S} such that

- k-median: minimize $\sum_{p \in \mathcal{P}} d(p, S)$
- k-means: minimize $\sum_{p \in \mathcal{P}}(d(p, S))^{2}$
- k-center: minimize $\max _{p \in \mathcal{P}} d(p, S)$
- spacial cases of $\ell_{\boldsymbol{p}}$ clustering: minimze $\sum_{\boldsymbol{p} \in \mathcal{P}}(\boldsymbol{d}(\boldsymbol{p}, \boldsymbol{S}))^{\boldsymbol{p}}$ for some $\boldsymbol{p} \geq 1$.

Coresets for Clustering

Given $\mathcal{P}, \boldsymbol{k}$ and $\boldsymbol{\epsilon}$ find weighted point set \mathcal{Q} such that clustering cost of \mathcal{Q} is $\boldsymbol{\epsilon}$-approximation to that of \mathcal{P}.

Two techniques:

- In geometric settings of low dimension via gridding techniques [HarPeled-Mazumdar]
- Higher dimensions and metric spaces [Chen, Feldman-Langberg] and many others using importance sampling
Many results including very recent work: size of coreset, running time to build coreset, dependence on \boldsymbol{d} vs \boldsymbol{k}, etc etc

Coresets for Clustering

Given $\mathcal{P}, \boldsymbol{k}$ and $\boldsymbol{\epsilon}$ find weighted point set \mathcal{Q} such that clustering cost of \mathcal{Q} is $\boldsymbol{\epsilon}$-approximation to that of \mathcal{P}.

Some known results:

- \boldsymbol{O} (poly $(\boldsymbol{k}, \log \boldsymbol{n}, 1 / \boldsymbol{\epsilon})$ for a $\boldsymbol{\epsilon}$-approximate core set for \boldsymbol{k}-median and \boldsymbol{k}-means in general metric spaces [Chen'09]
- $O\left(k d / \epsilon^{2}\right)$ for points in \mathbb{R}^{d} [Feldman-Langberg'11]
- $O(\operatorname{poly}(k, 1 / \epsilon))$ independent of dimension [Feldman-Schmidt-Sohler'13, Sohler-Woodruff'19]
- Dimension reduction to $\boldsymbol{O}\left(\boldsymbol{k} \log k / \epsilon^{2}\right)$ dimensions [Makarychev-Makarychev-Razenshteyn'19]

Importance Sampling for Coresets

High-level idea: Start with a crude approximation and use it for sampling [Chen]. Refined substantially later [Feldman-Langberg] and follow up work.
$(\alpha, \boldsymbol{\beta})$-bicriteria-approximation for k-clustering:

- centers S such that $|S| \leq \alpha k$
- $\operatorname{cost}(S, \mathcal{P}) \leq \boldsymbol{\beta} \cdot \operatorname{cost}\left(\boldsymbol{S}^{*}, \mathcal{P}\right)$ where \boldsymbol{S}^{*} is an optimal center set Here $\boldsymbol{\alpha}, \boldsymbol{\beta} \geq 1$. Both $\#$ of centers and cost approximate

Computing ($\boldsymbol{\alpha}, \boldsymbol{\beta}$)-approximation fast is possible using various ideas.

Coresets for k-median

Suppose S is an $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-bicriteria-approximation for \boldsymbol{k}-median $S=\left\{c_{1}, c_{2}, \ldots, c_{h}\right\}$ partitions \mathcal{P} into $\mathcal{P}_{1}, \ldots, \mathcal{P}_{\boldsymbol{h}}$
$\operatorname{cost}(S, \mathcal{P})=\sum_{i=1}^{h} \operatorname{cost}\left(c_{i}, \mathcal{P}_{i}\right)$

Coresets for k-median

Suppose \boldsymbol{S} is an $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-bicriteria-approximation for \boldsymbol{k}-median
$S=\left\{c_{1}, c_{2}, \ldots, c_{h}\right\}$ partitions \mathcal{P} into $\mathcal{P}_{1}, \ldots, \mathcal{P}_{\boldsymbol{h}}$
$\operatorname{cost}(S, \mathcal{P})=\sum_{i=1}^{h} \operatorname{cost}\left(c_{i}, \boldsymbol{P}_{i}\right)$
Intuitively treat as \boldsymbol{h} separate 1-median problems.

Coresets for k-median

Suppose \boldsymbol{S} is an $(\boldsymbol{\alpha}, \boldsymbol{\beta})$-bicriteria-approximation for \boldsymbol{k}-median
$S=\left\{c_{1}, c_{2}, \ldots, c_{h}\right\}$ partitions \mathcal{P} into $\mathcal{P}_{1}, \ldots, \mathcal{P}_{\boldsymbol{h}}$
$\operatorname{cost}(S, \mathcal{P})=\sum_{i=1}^{h} \operatorname{cost}\left(c_{i}, \mathcal{P}_{\boldsymbol{i}}\right)$
Intuitively treat as \boldsymbol{h} separate 1 -median problems.
Consider \boldsymbol{c}_{1} and $\mathcal{P}_{1} \cdot \operatorname{cost}\left(\boldsymbol{c}_{1}, \mathcal{P}_{1}\right)=\sum_{\boldsymbol{p} \in \mathcal{P}_{1}} \boldsymbol{d}\left(\boldsymbol{p}, \boldsymbol{c}_{1}\right)$ Hence sample a point $\boldsymbol{p} \in \mathcal{P}_{\boldsymbol{i}}$ with probability $\boldsymbol{d}\left(\boldsymbol{p}, \boldsymbol{c}_{1}\right) / \operatorname{cost}\left(\boldsymbol{c}_{1}, \mathcal{P}_{1}\right)$. Take several samples to control variance etc.

Coresets for k-median

Suppose S is an (α, β)-bicriteria-approximation for \boldsymbol{k}-median $S=\left\{c_{1}, c_{2}, \ldots, c_{\boldsymbol{h}}\right\}$ partitions \mathcal{P} into $\mathcal{P}_{1}, \ldots, \mathcal{P}_{\boldsymbol{h}}$
$\operatorname{cost}(\boldsymbol{S}, \mathcal{P})=\sum_{\boldsymbol{i}=1}^{\boldsymbol{h}} \operatorname{cost}\left(c_{\boldsymbol{i}}, \boldsymbol{P}_{\boldsymbol{i}}\right)$ Intuitively treat as \boldsymbol{h} separate 1-median problems.

Consider \boldsymbol{c}_{1} and $\mathcal{P}_{1} \cdot \operatorname{cost}\left(\boldsymbol{c}_{1}, \mathcal{P}_{1}\right)=\sum_{\boldsymbol{p} \in \mathcal{P}_{1}} \boldsymbol{d}\left(\boldsymbol{p}, \boldsymbol{c}_{1}\right)$ Hence sample a point $\boldsymbol{p} \in \mathcal{P}_{\boldsymbol{i}}$ with probability $\boldsymbol{d}\left(\boldsymbol{p}, \boldsymbol{c}_{1}\right) / \operatorname{cost}\left(\boldsymbol{c}_{1}, \mathcal{P}_{1}\right)$. Take several samples to control variance etc.

Actual scheme and analysis more tricky. Have to argue that sampling is good for potentially $\binom{n}{k}$ clusterings; coreset size becomes poly $(k, \log n)$. Geometry/VC-Dimension analysis to avoid dependence on \boldsymbol{n} and reduce to \boldsymbol{d}. Can change \boldsymbol{d} to \boldsymbol{k} via dimensionality reduction (not easy).

