Page Rank and Ravelom Walks also Pehon Ferkenius thootem

Eaely web search

- caligorize pages maneally into vaious clanss (hierauchically) Yahor! and then
- Key wad baved + adhue metterds Allá Vislá elic.

Issues: Scalalilits and Spamnvip and unveliahilits.
loogle apprach: Uoc lirk information
Web graph.
each wode is a webpoge/uel. links cleali disectid me.

$$
G=(U, E),
$$

Important: graph is disecied.
Links cucode infrmation that gives ingemalión on how imporlaid page. are. Cualie a earkis of webpages. "global". Use ranking + query urds. (baté).
How tó sank webpages in liems ys impolañe?
(1)

$$
\begin{aligned}
& \text { mpalance: } \\
& \begin{aligned}
\text { Scove, }(v) & =\sum_{(u, v) \in E} \quad \text { can Hpan cearils. } \\
& =\operatorname{indr}(v) .
\end{aligned} \\
& \text { weigh }
\end{aligned}
$$

weigh
(2)

$$
\operatorname{Screc}_{2}(v)=\sum_{(u, v) \in E} \frac{1}{d^{+}(u)}
$$ ha ouldfu.

(3)

$$
\operatorname{scoe}_{3}(v)=\sum_{(u, v) \in E} \frac{\operatorname{scoe}_{3}(u)}{d^{+}(u)}
$$

"recurenive definition.
Main quedini: does scres (u) exist?
Can woundize scre since scalis doen wh viodali equaliai

$$
\sum_{v} x(v)=1 \quad x(v) \geqslant 0
$$

x is a persatilits distivibulioin.

Reslem: For any shongly connedid graph 7 unique x S.I S.T. \bar{x} is a putatits disliv bulion and $x(v)=\sum_{(u, v) \in E E} \frac{x(u)}{d^{+}(u)} . \quad$ "Can be loupulied efficientrs".

II Stationary distïluatioin" i a random wall on the web soph.

Ex:

Randow Walhs and Maekor Chairs

$$
G=(U, E)
$$

A stochastic puress. $X_{0}, X_{1}, \ldots, X_{n}, .$.

$$
X_{i} \in V
$$

X_{0} is initial "eandro" vertex

$$
\begin{aligned}
& P_{l}\left[x_{t+1}=v \mid x_{t}=u, x_{t-1} \cdots x_{0}=\right] \\
& =\int_{2}\left[x_{t+1}=v \mid x_{t}=u\right]=\frac{1}{d^{+}(u)}
\end{aligned}
$$

proces is Markrian
Q: -what happens in the losy san?

- kow does the priens depend an the slailing vertes/distiibutioin?
- kow does this depend on the paph?

Diseclid goplu:

shoiply connceltd comprenents Walk will get slich ni a shiniphs Connecled Sink Component.

Thus it is useful to focees on shogls canneelid graples.

Peridicity:

(1)

Defn: Pecioid of Hati is i o vabex u $d(0)=\operatorname{gcd}(S(0)) \quad$ chuse $S(0)=\left\{n \mid\right.$ then is a cosd ${ }_{n}$ walk 8 langtar n from v to 03 .
v is aperiodic if $d(v)=1$ is peciodic othearse.

$$
d(0)>1
$$

Lemma: Let a be shögly connecié then $\forall v d(0)$ is same.

$$
F i x, u, v .
$$

$a+s$ divisible by $d(u)$
Led t be any clone $v \rightarrow v$ walk. lest $r+s+l$ is a clone $u \rightarrow u$ wall $\Rightarrow \quad a+s+1-$ is divisible ben $d(u)$.
$\Rightarrow t$ is divisible by $d(u)$.
$\Rightarrow d(u)$ divides $d(u)$ since $d(v)$ is $g c d$ of all t.
Simibuly $d(v)$ divides $d(u)$.

$$
\Rightarrow d(v)=d(u) .
$$

Lemma: Suppose G is shingly Convedid and $d(a)>$ is period of G. Run V can be partitioned wite $V_{0}, V_{2, \ldots}, V_{d-1}$ Si. $\left.\forall(u, v) \in E \quad u \in V_{i} \Rightarrow V \in V_{i+1}\right)$ and

Elge-weights and Finiti Sláte Markor Chains and Maleices

Ravdom walh:

go l'v a unifern neiglubo at sandom.
multigraph? pich a uniforn eolye nul at randon

In geeneal a pudaditís
distickulión
on out egeo
Finite stálé Markw chain.
Represent as a weighled praph n as a probiativitís hássi hios maliox P
self losp
 allroed Ω $P_{i i}>0$.

$$
\begin{aligned}
& P_{i j}=\begin{array}{c}
\text { Perhatili } q \text { griy to } j \\
\text { from } i \text {. }
\end{array} \\
& \text { from } i \text {. }
\end{aligned}
$$

$\sum_{j=1}^{n} P_{i j}=1$
$\forall i$ stochadic $P \geqslant 0 \quad$ malix .

Suppne $P(t)$ is the prohahilit dishíhulion oue statés at lime t
P^{2} is the R-step Lamili
ie $P_{i j}^{2}=$ pulabiliti i goist j afli a Hepp.

$$
P_{i j}^{l}=\left(P^{k}\right)_{i j}
$$

If $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is a puhali now vedn.
πP is the distulation ofter one flép $(\pi P) P$ is afli 2 Slen II P^{l} aflin a sleps.

Defn: A disliikulioin π is a stationany distie bulioir if
$\pi P=\pi$.

Q:
(1) Does $\pi=\pi P$ alwoup have a
(2) puhadulis redia ficuliös
(2) Does $\pi=\pi P$ lave a unique pios vedir filuliós.
(3) Do ins of P^{n} conerge to a puls vedin she $\pi=\pi P$?

Auswer:
(1) Alevaup!
(2) Uniquevern iff A is shiogles
(3) Yen if h is aperiadic.
$\Rightarrow \forall$ any slaitin disticibution
$\pi_{0} \quad \pi_{0} P^{n} \rightarrow \pi \cdot$ slaticum discibation.

Bach to Poge Rank
Web geaph. want to find a Sluhõor

$$
x(v)=\sum_{(u, v) \in E} \frac{x(u)}{d^{+}(u)}
$$

Brat web gepher ing no be sloogly connedied
Mrim-Poge "bich."

$$
(1-\varepsilon) a+\varepsilon K_{n}
$$

$\lambda_{\text {randon ? }}$?
 surfer:?
(4)

$$
(1-\varepsilon)_{2}^{1}\left[\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]+\varepsilon\left[\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right]
$$

Makes Manbo Chain evidic and cnapto Slenpls cmnectiod
\Rightarrow unique slaboin dislii hutioin II fer any $\varepsilon>0$.
\# Hro to compuli π ?
Dower methed. $\pi_{0} P^{n} \rightarrow \pi$ fo ane Tin Slent wit $\pi_{0}=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{n}, \cdots \frac{1}{2}\end{array}\right]$.

$$
\left(\frac{1}{n}, \cdots \frac{1}{n}\right)
$$

$$
\begin{aligned}
\pi P= & \pi\left((1-\varepsilon) P_{a}+\varepsilon P_{k_{n}}\right) \\
= & \pi(1-\varepsilon) P_{a}+\varepsilon \pi P_{k_{n}} \\
\lambda & \lambda \text { ean } . \\
& \begin{array}{c}
\text { expurit. } \\
\text { sparite } \& ~
\end{array} .
\end{aligned}
$$

So Compulà lini is earn.

How to prove 8 Markor Chair Theooen?
Pecon-Feobeniur thenem forn linear algebra:
$\pi P=\pi \Rightarrow \pi$ is a lef1eigenvedín of P wite eigen value 1 .
We are typically und to ignt eigen vedás.
Eigen vechai: A is a $n \times n$ matix.
$A_{x}=\lambda x \quad$ has a nom-zeo solulio
$\Leftrightarrow \lambda$ is an eigen value.
x is a courpusd eigen vadr.
$\operatorname{det}(A-\lambda I)$ is the chasclistic plyumial.
corts are eigen values. In general need wot be ual.

Spectial thery:

- If A is symmelire then all eigen values are seeal.
- If A is psd then all eigenvalver are $\geqslant 0$.
bat P is mitter bymentic.

Reorem-[Perron]: Let A be $x u \times n$ prsitive malrix: ie $A_{i j}>0 \quad \forall i, j$. Then A has a ual pontie eigen value λ and cons eigen recli $u>0$
(i) t othe eigon values λ^{\prime}
$\left|\lambda^{\prime}\right|<\lambda$ hence λ is the mique lagged eijen value.
(ii) If $\lambda x \leq A x$ fo $x \geq 0$ then

$$
\lambda x=A x
$$

(Iii) Unique eigen vection for λ
ie $A x=\lambda x \Rightarrow x=\alpha V$ fr fome Scalar α.

Abre uquires $A>0$
P for a gounal gaph has $A \geqslant 0$.
Defn: A is $n \times n$ malix $A \geqslant 0$ ie $A_{i j} \geqslant 0 \quad \forall i j$. We Say A is inudsuith if collenfund weighled dinelid goph is slins conneded.

Therem [Ferbeniu]] Let $A \geqslant 0$ and ineducible. Then A has a pritive eigen value $\lambda \geqslant\left|\lambda^{\prime}\right|$ po all other eigen values λ^{\prime}. Then is a pritive eigen vedir $v>0$ con of λ and fllany Lold for λ and v.
(1) For ancy um- jue $x \geqslant 0$ if $\lambda x \leq A x$ tur $\lambda x=A x$.
(2) If $\lambda x=A x$ ad then $x=\alpha v$ fr trom Scala α. ie unique, eigen vects scalis. scaliy.

Colollan: The lagedt real eigenvalue λ of an iusducible malix $A \geqslant 0$ has a proitive lyt eijen redin π. π is unisue (upt sealin) and is the suly non-zew vecter that Sali $\lambda \pi \leq \pi A$.

Dnơ: Consider A^{\top}. $A^{\top} \geqslant 0$ and inuduerble A^{\top} has fame eigenvaleer as A. Π is nigut eigen vechi can b.

Coldlay: Lel. $A \geqslant 0 \quad \lambda$ lauget sed eigen value and $v>0$ be highl and leyt eigen vech $q \lambda$. Then v is moly non-ws eigen vedi q A and \bar{T} is mly wonng er $1 A$.
Prog: F-nan thenem $v>0$ is migue righel cieponers vedir of A. on λ. Suppres u is the engut eigen vectir ob $\lambda^{\prime} \neq \lambda$. Claim u is wot >0.
Seppure A is $\pi A u=\lambda \pi u$ and and $\pi A u=\lambda^{\prime} \pi u$

$$
\Rightarrow \lambda \pi u=\lambda^{\prime} \pi u \quad \text { sine } \lambda \neq \lambda^{\prime}
$$

$\pi u=0 \Rightarrow u$ has to have $0 n$ ve.. Similaily Lefte cijen verti.

Nno Convider sloithadic malix P jer an insducilde Markn Ilain

$$
\begin{aligned}
& P \text { pr an involucise } \\
& P\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
\vdots \\
1
\end{array}\right] \Rightarrow \lambda=1 \text { is an eign } \\
& \text { value. }
\end{aligned}
$$

λ^{\prime} is a real rigan value

$$
\begin{aligned}
& \Rightarrow \lambda^{\prime} \quad \lambda^{\prime} \leq 1 \\
& P x=\lambda^{\prime} x \\
& \lambda^{\prime} \leq 1
\end{aligned}
$$

$\Rightarrow \lambda=1$ is the laygh ud eifn be $\Rightarrow \lambda$ left eigen vactin $\pi>0$. unigue.!

Nro consider $A>0$
Corbllan: Let λ be layst egunde $\hat{1} A>0$. Then T, \cup be left sight eignveti. T $v=1$.
Then $\lim _{n \rightarrow \infty} \frac{A^{n}}{\lambda^{n}}=r \pi$. \uparrow oulís puoduct

$$
\begin{align*}
& {\left[\begin{array}{l}
\pi_{0}
\end{array}\right]\left[\begin{array}{c}
\frac{\pi}{\pi} \\
\vdots
\end{array}\right]=\left[\begin{array} { l l }
{ \pi _ { 0 }] ^ { \pi } }
\end{array} [\begin{array} { l }
{ 1 } \\
{ 1 } \\
{ 1 }
\end{array}] \left[\begin{array}{lll}
\pi &] & {\left[\begin{array}{ll}
{[1]} \\
=\pi
\end{array}\right]}
\end{array}\right.\right.} \\
& {\left[\begin{array}{lll}
a_{1} & a_{2} & a_{n}
\end{array}\right]\left[\begin{array}{lll}
\pi_{1} & \pi_{2} & \pi_{n} \\
\pi_{1} & \pi_{2} & \pi_{n} \\
\pi_{1} & \pi_{2} & \pi_{n}
\end{array}\right]=\left[\begin{array}{c}
\pi_{1}, \pi_{n}
\end{array} \pi_{n}\right]}
\end{align*}
$$

What is π if P is pecirdic.

$$
\pi_{V}=\frac{1}{d} \quad V_{0}-V_{d-1}
$$

$$
\frac{1}{d\left|V_{i}\right|}=\pi_{u} \quad v \in V_{i}
$$

Peesoud (Coulestinal Page Rank

$$
(1-\varepsilon) P_{a}+\varepsilon K_{S}
$$

When e S is a subset of "interceding" pages.
S is all pages with key ord. etc.

Syam:

