Space efficient quantile selection

Input: stream \(a_1, \ldots, a_n \in U \) where \(U \) has order <

\[
\begin{array}{cccccccc}
2 & 5 & 7 & 1 & 4 & 11 & 13 & \ldots
\end{array}
\]

e.g. numerical data
- names w/ alphabetic order
- grades

allowed multiple passes

Goal: return the median w/ minimum:

(a) \# passes (b) space

more generally: "quantile queries"

select rank \(k \) element

(kth largest)
1 pass: Input
$O(1)$ space
<table>
<thead>
<tr>
<th>Passes</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$\alpha(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

P \(\tilde{O}(n^{1/p})\) sort and select quickselect (random pivot)

\[2 \sqrt{n}\]

Munro Paterson 1981

quantile summaries
Approximations

given rank $k \in [n]$ and param $\varepsilon > 0$,
return element w/ rank $k = \varepsilon n$

Sampling:

for median:
 sample $l = O\left(\frac{\log \frac{\sqrt{6}}{\varepsilon}}{\varepsilon^2}\right)$ elements
 return median of sample

for rank $k = d n$
 sample l
 return rank $d l$ out of the sample

Deterministic?
Quantiles

space-efficient
mergable
answer ε-approximate quantile queries

let elements $q_1 < q_2 < \ldots < q_\ell \in S$

along w/ intervals $I(q_i)$ rank(q_i) $\in I(q_i)$

need $\geq \frac{1}{\varepsilon}$ points

By tracking min/max specially, assume

rank(q_1) = 1, rank(q_ℓ) = n.

$0 \leq q_i \leq n$
how to ensure such \(q_i \) exists if \(k < k' \)?

Then return \(q_i \).

If \(I(a_i) \in [k, \text{en}, k + \text{en}] \) for some \(q_i \),

then return \(q_i \).
Lemma

Then every query k contains an interval $I(q_i)$.

Proof two cases:

$k \in I(q_i)$ for some q_i

$k \notin I(q_i)$ \forall q_i
Suppose $k \in I(q_i)$ for some i.

If $I(q_i) \subseteq [k-\varepsilon n, k+\varepsilon n]$ then done.

Else look at q_{i-1}.

$k-\varepsilon n < k < k+\varepsilon n$.
suppose $k \not\in \mathcal{I}(q_i) \cup i$

the "combined intervals" cover $[n]$
pick 1 covering k.

one of the intervals must lie inside
Key invariant: any two consecutive intervals have width $\leq 2\varepsilon n$.

"ε-APX quantile summary"
Merging, given two \(\varepsilon \)-APX quantile summaries over 2 streams, want \(\varepsilon \)-APX summary over combined stream

\[Q = \]

\[Q' = \]

\[Q'' = \]

want to combine \(Q, Q'' \) to get summary of

\[s_1 \]

\[+ s_2 \]

\"\[Q' + Q'' = \{ q_1'', ..., q_c'', I''(q_1''), ..., I''(q_c'') \} \]\"
denote: \[Q = \{ q_1', \ldots, q_k', I(q_1'), \ldots, I(q_k') \} \]

\[Q'' = \{ q_1'', \ldots, q_m'', I''(q_1''), \ldots, I''(q_m'') \} \]

let \(q_j'' \in Q'' \). \(I''(q_j) \) bounds rank \(q_j'' \) wrt \(S_2 \)

goal: bound rank \(q_j'' \) wrt \(S_1+S_2 \).

\[
\begin{align*}
\text{rank of } q_j'' \text{ in } S_1 \{ & \geq \min I'(q_i') \\
& \leq \max I'(q_{i+1}') \}
\end{align*}
\]

so \(\min I'(q_i') + \min I''(q_j'') \)

\[
\leq \text{rank } (q_j'' \text{ in } S_1+S_2) \\
\leq \max I''(q_{i+1}'') + \max I''(q_j'')
\]

set \(I''(q_j'') = \left[\min I'(q_i') + \min I''(q_j''), \max I''(q_{i+1}'') + \max I''(q_j'') \right] \)
$Q'' = \{ q_1, \ldots, q_e, q_i, \ldots, q_m \}$, w/ intervals I''.

To show Q'' is ε-APX, need to show "2\varepsilon n width" property.

Take two consecutive intervals in Q''.

\[
\begin{array}{c}
[q_i] \\
\end{array}
\quad
\begin{array}{c}
[q_j] \\
\end{array}
\]

Two cases:

1. elements from diff sets
2. elements from same sets
\[\min I(q) + \min I''(q) = \text{min} \quad \text{(1)} \]

\[\max I(q) + \max I''(q) = \text{max} \quad \text{(2)} \]

\[\text{(1)} - \text{(2)} = \max I'(q_{i+1}) + \max I''(q_{j+1}) - \min I'(q_i) - \min I''(q_{j+1}) \]

\[\leq \epsilon n_1 + 2\epsilon n_2 \]

\[= 2\epsilon (n_1 + n_2) \]
same sets

\[\min I'(q_i^j) + \min I''(q_j^i) \quad \max I'(q_{i+1}^j) + \max I''(q_{j+1}^i) \]

\[\frac{\max I'(q_{i+1}^j) + \max I''(q_{j+1}^i) - \min I'(q_i^j) - \min I''(q_j^i)}{2 \varepsilon n_1 + 2 \varepsilon n_2 = 2 \varepsilon (n_1 + n_2)} \]
This shows that merging 2 ε-APX QS's gives ε-APX QS of combined streams

size?
Pruning.

Input:

ϵ-approximate quantile summary w/ too many points

Goal: sparser summary that's still very good

& keep

l queries
Claim: resulting quantile is \((\varepsilon + \frac{1}{2\varepsilon})\)-APX

Proof

Suppose we query a rank \(k\).

Look at original summary.

\[\leq \frac{1}{2\varepsilon} n \]

\[2 \varepsilon n + \frac{n}{\varepsilon} \]

\((\varepsilon + \frac{1}{2\varepsilon})\)-Approx
Recap: we can combine \(\varepsilon \)-APX quantile summaries to get \(\varepsilon \)-APX quantile summary of whole thing. Sparsify \(\varepsilon \)-APX quantile summary to \((\varepsilon + \frac{1}{2k})\)-APX quantile summary w/ k points.

Remains to address:

how to make one at all??
what if $n=1$?

Take the point

I claim that's all we need!

\[APX \]

\[\frac{3\epsilon}{\log n} \]
\[\frac{2\epsilon}{\log n} \]
\[\frac{\epsilon}{\log n} \]

\[O \]

\[\ell \]

take $k = \frac{\log n}{2\epsilon}$

at the root,

\[\ell \approx \frac{3\log n}{\log n} \]

ϵ-approximate quantiles
Space?

only keep "root summaries"
Theorem

- 1-pass
- $O(\log^2(n)/\varepsilon)$ space
- deterministic
- ε-APX quantile over stream

idea: mergability + dyadic intervals trick

slightly better:
have first level contain \(\frac{1}{2} \) points

\[\log(n) \]

"leaves" \(\leq n \)
Theorem++

- 1-pass
- \(O(\log^2(\varepsilon n)/\varepsilon)\) space
- deterministic
- \(\varepsilon\)-APX quantile over stream

Even better?

Khanna-Greenwald [2001]:

\[\frac{1}{\varepsilon} \log(\varepsilon n) \] space

- more sophisticated quantile summary, merging
- interval trick
Finding the median (and other ranks) in p passes

Fix $p=2$ for simplicity.

goal: $O(\sqrt{n \log(n)})$ space

suppose we are querying rank k.

1st pass: build ε-APX quantile summary

for $\varepsilon = \frac{1}{\sqrt{n}}$ ($\log(n)$ space w/ GK)

query $k - \sqrt{n}$, $k + \sqrt{n}$ \Rightarrow a, b

\[
\frac{b - a}{\sqrt{n}} \leq \frac{4 \sqrt{n}}{n}
\]

\[
\begin{array}{c}
0 \\
\alpha \quad \beta
\end{array}
\]

\[
k - 2\sqrt{n} \leq \text{rank}(a) \leq k \leq \text{rank}(b) \leq k + 2\sqrt{n}
\]

\[a = \text{query}(k - \sqrt{n})\]
2nd pass:

$$\text{Count}^\#$$

Take the \((k-\#(\leq a/b))\)th in the sorted set

for general \(p\):

- make \(\frac{1}{n^p}\)-APX quantile summaries and filter.
- After \(p\) passes, down to \(n^{1/p}\) elements sort and select.