Graph Streaming and Sketching

Lecture 19
April 2, 2019
Part I

Matchings
Matchings

Definition

A matching $M \subseteq E$ in a graph $G = (V, E)$ is a set of edges that do not intersect (share vertices).

Definition

A matching $M \subseteq E$ in a graph $G = (V, E)$ is a perfect matching if all vertices are matched.
Matchings

Definition

A matching $M \subseteq E$ in a graph $G = (V, E)$ is a set of edges that do not intersect (share vertices).

Definition

A matching $M \subseteq E$ in a graph $G = (V, E)$ is a perfect matching if all vertices are matched.

- Given a graph G does it have a perfect matching?
- Find a maximum cardinality matching.
- Find a maximum weight matching.
- Find a minimum cost perfect matching.
- Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice, beautiful, ···
Given a graph G does it have a perfect matching?

Find a maximum cardinality matching.

Find a maximum weight matching.

Find a minimum cost perfect matching.

Count number of (perfect) matchings.

All of the above solvable in polynomial time.

- Bipartite graphs: via flow techniques
- Non-bipartite/general graphs: more advanced techniques
- Classical topics in combinatorial optimization
Semi-streaming setting

Edges \(e_1, e_2, \ldots, e_m\) come in some (adversarial) order

Questions:

- With \(\tilde{O}(n)\) memory approximate maximum cardinality matching
- With \(\tilde{O}(n)\) memory approximate maximum weight matching
- Multiple passes
- Estimate size of maximum cardinality matching
- \(\ldots\)

Substantial literature on upper and lower bounds
Maximum cardinality

Definition
A matching M is maximal if for all $e \in E \setminus M$, $M + e$ is not a matching.

Lemma
If M is maximal then $|M| \geq |M^*|/2$ for any matching M^*. Hence, a maximal matching is a $1/2$-approximation.
Maximal matching in streams

\[M = \emptyset \]

While (stream is not empty) do
 \(e \) is next edge in stream
 If \((M + e)\) is a matching
 \[M \leftarrow M + e \]
 EndWhile
Output \(M \)
Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that $w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m)$

$M = \emptyset$

For ($i = 1$ to m) do

- If $(M + e_i)$ is a matching

 $M \leftarrow M + e_i$

EndWhile

Output M

Claim: $w(M) \geq w(M^*) / 2$.

Streaming setting? Cannot sort!
Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that $w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m)$

$M = \emptyset$

For ($i = 1$ to m) do

If ($M + e_i$) is a matching

$M \leftarrow M + e_i$

EndWhile

Output M

Claim: $w(M) \geq w(M^*)/2$.
Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that \(w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m) \)

\[M = \emptyset \]

For \(i = 1 \) to \(m \) do

If \((M + e_i)\) is a matching

\[M \leftarrow M + e_i \]

EndWhile

Output \(M \)

Claim: \(w(M) \geq w(M^*)/2 \).

Streaming setting? Cannot sort!
Maximum-weight matching

\(M = \emptyset \)

For \((i = 1 \text{ to } m) \) do

\[C = \{ e' \in M \mid e' \cap e_i \neq \emptyset \} \]

If \(w(e_i) > w(C) \) then

\[M \leftarrow M - C + e_i \]

EndWhile

Output \(M \)
Maximum-weight matching

\[M = \emptyset \]

For (\(i = 1 \) to \(m \)) do

\[C = \{ e' \in M \mid e' \cap e_i \neq \emptyset \} \]

If (\(w(e_i) > w(C) \)) then

\[M \leftarrow M - C + e_i \]

EndWhile

Output \(M \)

Can be arbitrarily bad compared to optimum weight.
Maximum-weight matching

\[M = \emptyset \]

For \(i = 1 \) to \(m \) do

\[C = \{ e' \in M \mid e' \cap e_i \neq \emptyset \} \]

If \(w(e_i) > (1 + \gamma)w(C) \) then

\[M \leftarrow M - C + e_i \]

EndWhile

Output \(M \)
Maximum-weight matching

\[M = \emptyset \]

For \((i = 1 \text{ to } m)\) do

\[C = \{e' \in M \mid e' \cap e_i \neq \emptyset\} \]

If \((w(e_i) > (1 + \gamma)w(C))\) then

\[M \leftarrow M - C + e_i \]

EndWhile

Output \(M\)

Theorem

\[w(M) \geq f(\gamma)w(M^*) . \]
Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were “killed” by e.

Claim: $w(T_e) \leq w(e)/\gamma$.

$e = C_0 \text{ killed } C_1 \text{ killed } C_2 \ldots \text{ killed } C_h$

$w(C_i) \geq (1 + \gamma)w(C_{i+1})$ for $i \geq 0$ and adding up $w(e) + w(T_e) \geq (1 + \gamma)w(T_e)$.

Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were “killed” by e.

Claim: $w(T_e) \leq w(e)/\gamma$.
Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were “killed” by e.

Claim: $w(T_e) \leq w(e)/\gamma$.

$e = C_0$ killed C_1 which killed $C_2 \ldots$ killed C_h

$w(C_i) \geq (1 + \gamma)w(C_{i+1})$ for $i \geq 0$ and adding up

$w(e) + w(T_e) \geq (1 + \gamma)w(T_e)$
Claim: \(w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e)) \).
Claim: $w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$.

Fix any $f \in M^*$.

- If $f \in M$ at some point then $f \in T_e$ for some $e \in M$. or $f \in M$. Charge f to itself.
- When f considered it was not added to M. Let C_f conflicting edges at that time. $w(f) \leq (1 + \gamma)w(C_f)$.
 - If $|C_f| = 1$ charge f to single edge $e \in C_f$.
 - If $|C_f| = 2$ charge f in proportion to weights of edges in C_f.
 - If f charges e' and e' gets killed by e'', transfer charge of f from e' to e''.
Analysis

Claim: \(w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e)) \).

Fix any \(f \in M^* \).

- If \(f \in M \) at some point then \(f \in T_e \) for some \(e \in M \). or \(f \in M \). Charge \(f \) to itself.
- When \(f \) considered it was not added to \(M \). Let \(C_f \) conflicting edges at that time. \(w(f) \leq (1 + \gamma)w(C_f) \).
 - If \(|C_f| = 1 \) charge \(f \) to single edge \(e \in C_f \).
 - If \(|C_f| = 2 \) charge \(f \) in proportion to weights of edges in \(C_f \).
 - If \(f \) charges \(e' \) and \(e' \) gets killed by \(e'' \), transfer charge of \(f \) from \(e' \) to \(e'' \).
- If \(e \in M \) can be charged twice hence total is \(2(1 + \gamma)w(e) \)
Claim: \(w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e)) \).

Fix any \(f \in M^* \).

- If \(f \in M \) at some point then \(f \in T_e \) for some \(e \in M \). or \(f \in M \). Charge \(f \) to itself.
- When \(f \) considered it was not added to \(M \). Let \(C_f \) conflicting edges at that time. \(w(f) \leq (1 + \gamma)w(C_f) \).
 - If \(|C_f| = 1 \) charge \(f \) to single edge \(e \in C_f \).
 - If \(|C_f| = 2 \) charge \(f \) in proportion to weights of edges in \(C_f \).
 - If \(f \) charges \(e' \) and \(e' \) gets killed by \(e'' \), transfer charge of \(f \) from \(e' \) to \(e'' \).
- If \(e \in M \) can be charged twice hence total is \(2(1 + \gamma)w(e) \)
- If \(e' \in T_e \) then only one edge of \(M^* \) leaves charge on \(e' \). Why?
Claim: \(w(T_e) \leq w(e)/\gamma. \)

Claim: \(w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e)). \)

Setting \(\gamma = 1 \) we obtain \(w(M^*) \leq 6w(M). \)
Claim: \(w(T_e) \leq w(e)/\gamma \).

Claim: \(w(M^*) \leq (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e)) \).

Setting \(\gamma = 1 \) we obtain \(w(M^*) \leq 6w(M) \).

A clever and simple \((\frac{1}{2} - \epsilon)\)-approximation [Paz-Schwartzman’17]
Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random arrival order, lower bounds, ...
Part II

Cut Sparsifiers
Graph Sparsification

\(G = (V, E) \) input graph and could be dense
- \(n \) is reasonable to store
- \(n^2 \) may be unreasonable to store
- edges are sometimes implicit and may be generated on the fly

Sparsification: Given \(G = (V, E) \) create a *sparse* graph \(H = (V, F) \) such that \(H \) mimics \(G \) for some property of interest
Graph Sparsification

\(G = (V, E) \) input graph and could be dense
- \(n \) is reasonable to store
- \(n^2 \) may be unreasonable to store
- edges are sometimes implicit and may be generated on the fly

Sparsification: Given \(G = (V, E) \) create a *sparse* graph \(H = (V, F) \) such that \(H \) mimics \(G \) for some property of interest
- Connectivity
- Distances (spanners and variants)
- Cuts (cut sparsifiers)
- ...
Cut Sparsifier

Definition

Given an edge weighted graph \(G = (V, E) \) with \(w : E \to \mathbb{R}_+ \) an edge weighted graph \(H = (V, F) \) with \(w' : F \to \mathbb{R}_+ \) is an \(\epsilon \)-approximate cut sparsifier if for all \(S \subset V \),

\[
(1 - \epsilon)w(\delta_G(S)) \leq w'(\delta_H(S)) \leq (1 + \epsilon)w(\delta_G(S)).
\]
Cut Sparsifier

Definition

Given an edge weighted graph $G = (V, E)$ with $w : E \rightarrow \mathbb{R}_+$ an edge weighted graph $H = (V, F)$ with $w' : F \rightarrow \mathbb{R}_+$ is an ϵ-approximate cut sparsifier if for all $S \subseteq V$,

$$(1 - \epsilon)w(\delta_G(S)) \leq w'(\delta_H(S)) \leq (1 + \epsilon)w(\delta_G(S)).$$

Very important concept and many powerful applications in graph algorithms and beyond.
Definition

Given an edge weighted graph $G = (V, E)$ with $w : E \rightarrow \mathbb{R}_+$ an edge weighted graph $H = (V, F)$ with $w' : F \rightarrow \mathbb{R}_+$ is an ϵ-approximate cut sparsifier if for all $S \subset V$,

$$(1 - \epsilon)w(\delta_G(S)) \leq w'(\delta_H(S)) \leq (1 + \epsilon)w(\delta_G(S)).$$
Fundamental results

Theorem (Benczur-Karger’00)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O\left(\frac{1}{\epsilon^2} n \log n\right)$ edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O\left(\frac{1}{\epsilon^2} n\right)$ edges.
Fundamental results

Theorem (Benczur-Karger’00)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O(\frac{1}{\epsilon^2} n \log n)$ edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O(\frac{1}{\epsilon^2} n)$ edges.

What is a cut-sparsifier of a complete graph K_n?
Fundamental results

Theorem (Benczur-Karger’00)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O\left(\frac{1}{\epsilon^2} n \log n\right)$ edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph $G = (V, E)$ on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O\left(\frac{1}{\epsilon^2} n\right)$ edges.

What is a cut-sparsifier of a complete graph K_n? An expander graph!
Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly $O(n \text{polylog}(n))$ space as edges come by?

Can use cut-sparsifier algorithms as a black box.
Merge and Reduce

Observation (Merge): If $H_1 = (V, F_1)$ is a α-approximate sparsifier for $G_1 = (V, E_1)$ and $H_2 = (V, F_2)$ is a α-approximate cut-sparsifier for $G_2 = (V, E_2)$ then $H_1 \cup H_2 = (V, F_1 \cup F_2)$ is a α-approximate cut-sparsifier for $G_1 \cup G_2 = (V, E_1 \cup E_2)$.
Observation (Merge): If $H_1 = (V, F_1)$ is a α-approximate sparsifier for $G_1 = (V, E_1)$ and $H_2 = (V, F_2)$ is a α-approximate cut-sparsifier for $G_2 = (V, E_2)$ then $H_1 \cup H_2 = (V, F_1 \cup F_2)$ is a α-approximate cut-sparsifier for $G_1 \cup G_2 = (V, E_1 \cup E_2)$.

Observation (Reduce): If $H = (V, F)$ is a α-approximate sparsifier for $G = (V, E_1)$ and $H' = (V, F')$ is a β-approximate cut-sparsifier for H then H' is a $(\alpha \beta)$-approximate cut-sparsifier for G.
Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly $O(n \text{polylog}(n))$ space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce via a binary tree approach over the m edges in the stream. Seen this approach twice already: range queries in CountMin sketch and quantile summaries.
Cut sparsifiers in streaming

- Split stream of m edges into k graphs of m/k edges each. Let G_1, G_2, \ldots, G_k be the k graphs. Assume for simplicity that k is a power of 2.
- Imagine a binary tree with G_1, \ldots, G_k as leaves.
- Build a sparsifier bottom up. At each internal node merge the sparsifiers and reduce with approximation α.
Cut sparsifiers in streaming

- Split stream of m edges into k graphs of m/k edges each. Let G_1, G_2, \ldots, G_k be the k graphs. Assume for simplicity that k is a power of 2.
- Imagine a binary tree with G_1, \ldots, G_k as leaves.
- Build a sparsifier bottom up. At each internal node merge the sparsifiers and reduce with approximation α.

Questions:
- What is α to ensure that final sparsifier is ϵ-approximate?
- How much space needed in streaming setting?
Cut sparsifiers in streaming

- What is α to ensure that final sparsifier is ϵ-approximate?
- How much space needed in streaming setting?

Depth of tree is $\leq \log(m/n) \leq \log n$. Due to reduce operations final approximation is $(1 + \alpha)^d$. Hence $(1 + \alpha)^d \leq (1 + \epsilon)$ implies $\alpha \simeq \epsilon/(ed) \simeq \epsilon/(e \log n)$
Cut sparsifiers in streaming

- What is α to ensure that final sparsifier is ϵ-approximate?
- How much space needed in streaming setting?

Depth of tree is $\leq \log(m/n) \leq \log n$. Due to reduce operations final approximation is $(1 + \alpha)^d$. Hence $(1 + \alpha)^d \leq (1 + \epsilon)$ implies $\alpha \approx \epsilon/(ed) \approx \epsilon/(e \log n)$

Memory analysis: Sparsifier size with $\alpha = \epsilon/\log n$ is $O(n \log^2 n/\epsilon^2)$ (if one uses BSS sparsifier, otherwise another log factor for Benczur-Karger sparsifier).
Need another $\log n$ factor to store sparsifiers at $\log n$ levels for streaming.