Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,
Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:
- find all “similar” items (application: duplicate detection in documents)
- for an item x find all items in the collection similar to x (near-neighbor search, many applications)
Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:
- find all “similar” items (application: duplicate detection in documents)
- for an item x find all items in the collection similar to x (near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.
High-level Ideas

- How to measure similarity/dissimilarity? Proxy functions for estimating/capturing similarity
- Focus only on *highly* similar items rather than try to find similarity for all pairs
- Compression/sketching/hashing to create compact representations of objects
- Fast/approximate near-neighbor search via ideas such as locality-sensitive-hashing, clustering etc
Topics

- Jaccard similarity for sets and minhash
- Angular distance and simhash
- Locality-sensitive hashing
Part I

Jaccard Similarity and Min-wise independent Hashing
Motivation: How do we detect near-duplicate text documents? Web pages, papers, homeworks, ...?
Set Similarity

Motivation: How do we detect near-duplicate text documents? Web pages, papers, homeworks, ...?

Model documents as (multi)sets of “words” or more generally “shingles”

- A very large set of words/singles
- Each document is a set of words/shingles
- Large number of documents and each document is sparse in space of words/shingles
Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as

$$\frac{|S \cap T|}{|S \cup T|}$$

and denoted by $\text{SIM}(S, T)$.
Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as

$$\frac{|S \cap T|}{|S \cup T|}$$

and denoted by $\text{SIM}(S, T)$.

Assumption: S, T very similar if $\text{SIM}(S, T) \geq \alpha$ for some fixed threshold α. Say $\alpha = 0.7$
Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as

$$\frac{|S \cap T|}{|S \cup T|}$$

and denoted by $\text{SIM}(S, T)$.

Assumption: S, T very similar if $\text{SIM}(S, T) \geq \alpha$ for some fixed threshold α. Say $\alpha = 0.7$

Question: Given many documents how do we find similar documents?
Min Hashing

Let n be the size of vocabulary

For a permutation σ of $[n]$ and set S let

$$\sigma_{\min}(S) = \min\{\sigma(i) \mid i \in S\}$$
Min Hashing

Let n be the size of vocabulary

For a permutation σ of $[n]$ and set S let

$$\sigma_{\text{min}}(S) = \min\{\sigma(i) \mid i \in S\}$$

Example:
Min Hashing

Lemma

Let S, T be two subsets of $[n]$. Suppose σ is a random permutation of $[n]$. Then

$$\Pr[\sigma_{\min}(S) = \sigma_{\min}(T)] = \frac{|S \cap T|}{|S \cup T|}.$$
Min Hashing

- Pick ℓ random permutations $\sigma^1, \sigma^2, \ldots, \sigma^\ell$
- For each set S store a ℓ-tuple $(\sigma^1_{\text{min}}(S), \ldots, \sigma^\ell_{\text{min}}(S))$
- To check similarity between S and T let $s = |\{i \mid \sigma^i_{\text{min}}(S) = \sigma^i_{\text{min}}(T)\}|$. Output estimator $Z = \text{SIM}(S, T) = s/\ell$
Min Hashing

- Pick ℓ random permutations $\sigma^1, \sigma^2, \ldots, \sigma^\ell$
- For each set S store a ℓ-tuple $(\sigma^1_{\text{min}}(S), \ldots, \sigma^\ell_{\text{min}}(S))$
- To check similarity between S and T let

 $s = |\{ i \mid \sigma^i_{\text{min}}(S) = \sigma^i_{\text{min}}(T) \}|$. Output estimator

 $Z = \text{SIM}(S, T) = s/\ell$

Z is an exact estimator for $\text{SIM}(S, T)$.

Exercise: Suppose $\text{SIM}(S, T) \geq \alpha$. How large should ℓ be such that $\Pr[Z < (1 - \epsilon)\alpha] < \delta$?
Min Hashing

In practice:

- Pick some sufficiently large ℓ
- Use “shingles” instead of “words”: depends on application
- Store for each S the compact “sketch/signature” $(\sigma^1_{\text{min}}(S), \ldots, \sigma^\ell_{\text{min}}(S))$
- Do further optimizations for performance/space

See Chapter 3 in Mining Massive Data Sets book by Leskovic, Rajaraman, Ullman.
Random permutation?

Random permutation like a random hash function is complex

- Cannot store compactly
- Computing $\sigma_{\text{min}}(S)$ expensive

Need pseudorandom permutations that suffice.
Minwise Independent Permutations

[Broder-Charikar-Frieze-Mitzemacher]

Given \(n \), \(S_n \) is the set of \(n! \) permutations

Want a family \(\mathcal{F} \subseteq S_n \) of permutations such that picking a random \(\sigma \) from \(\mathcal{F} \) behaves like a random permutation (uniformly chosen from \(S_n \))

Definition

A family \(\mathcal{F} \subseteq S_n \) is a minwise independent family of permutations if for every \(X \subseteq [n] \) and \(a \in X \), for a \(\sigma \) chosen uniformly from \(\mathcal{F} \),

\[
\Pr[\sigma_{\min}(X) = a] = \frac{|X|}{n}.
\]
Minwise Independent Permutations

[Broder-Charikar-Frieze-Mitzemacher]

Given n, S_n is the set of $n!$ permutations

Want a family $\mathcal{F} \subseteq S_n$ of permutations such that picking a random σ from \mathcal{F} behaves like a random permutation (uniformly chosen from S_n)

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F},

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$
Minwise Independent Permutations

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F},

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.
Minwise Independent Permutations

Definition
A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F},

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.

Question: is there a small \mathcal{F}? Not obvious there is a non-trivial family.
Minwise Independent Permutations

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F},

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.

Question: is there a small \mathcal{F}? Not obvious there is a non-trivial family.

- There exist minwise independent families of size 4^n
- Any minwise independent family must have size $e^{(1-o(1))n}$

Hence we need to relax the requirement further.
Minwise Independent Permutations

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F},

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Two relaxations:

- ϵ-approximate minwise independence.

 $$\frac{1 - \epsilon}{|X|} \leq \Pr[\sigma_{\min}(X) = a] \leq \frac{1 + \epsilon}{|X|}.$$

- Need condition to hold only for sets X where $|X| \leq k$ for some $k < n$. Sufficient for applications where sets are much smaller.
Relaxation of Minwise Independence

Definition

A family $\mathcal{F} \subseteq S_n$ is (ϵ, k) min-wise independent family if for all $X \subset [n]$ such that $|X| \leq k$, if σ is chosen uniformly from \mathcal{F},

$$\frac{1 - \epsilon}{|X|} \leq \Pr[\sigma_{\min}(X) = a] \leq \frac{1 + \epsilon}{|X|}.$$
Question: Is there a connection between minwise independent permutations and hashing?

Suppose \mathcal{H} is a family of t-wise independent hash functions from $[n]$ to $[n]$. Let $h \in \mathcal{H}$. Why is h not a permutation?
Minwise Independence and Hashing

Question: Is there a connection between minwise independent permutations and hashing?

Suppose \(\mathcal{H} \) is a family of \(t \)-wise independent hash functions from \([n]\) to \([n]\). Let \(h \in \mathcal{H} \). Why is \(h \) not a permutation? Because of collisions.

Suppose \(h : [n] \rightarrow [m] \) where \(m \gg n \) then \(h \) has very low probability of collisions. Then would \(h \) behave like a minwise independent permutation?
Theorem (Indyk)

Let \mathcal{H} be a t-wis independent family of hash functions from $[n]$ to $[n]$ where $t = \Omega(\log \frac{1}{\epsilon})$. Then \mathcal{H} is a (ϵ, k) minwise-independent family of permutations for $k = \Omega(\epsilon n)$.

Thus hash functions from $[n]$ to $[n]$ effectively suffice for minwise independence and can be used in minhashing.
Minwise independence and Distinct Elements

Do you see connection between minwise independent permutations/hashing and Distinct Element sampling?

Exercise: How would you use minwise independent permutations to sample near-uniformly from the set of distinct elements in a stream?
Part II

Angular Distance and Simhash
Angular distance

Given a collection of vectors v_1, v_2, \ldots, v_n in \mathbb{R}^d representing some data objects.

Two vectors u, v “similar” if they point roughly in the same direction.

Define $\text{dist}(u, v) = \frac{\theta(u, v)}{\pi}$ where $\theta(u, v)$ is angle between vectors u and v. Assuming u, v are unit vectors wlog we have $u \cdot v = \cos(\theta(u, v))$.

Similarity is $1 - \text{dist}(u, v)$.
Sim Hash

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector r
- For each v_i set $h_r(v_i) = \text{sign}(r \cdot v_i)$

Lemma

$\Pr[h_r(v_i) = h_r(v_j)] = \frac{\theta(v_i, v_j)}{\pi}$.

Using several random hyperplanes r_1, r_2, \ldots, r_ℓ we create a compact hash value/sketch for angle similarity.
Sim Hash

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector r
- For each v_i set $h_r(v_i) = \text{sign}(r \cdot v_i)$

Lemma

$$
\Pr[h_r(v_i) = h_r(v_j)] = \frac{\theta(v_i, v_j)}{\pi}.
$$
Sim Hash

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector r
- For each v_i set $h_r(v_i) = \text{sign}(r \cdot v_i)$

Lemma

$$\Pr[h_r(v_i) = h_r(v_j)] = \theta(v_i, v_j) / \pi.$$

Using several random hyperplanes r_1, r_2, \ldots, r_ℓ we create a compact hash value/sketch for angle similarity.
A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \mathcal{H} such that for h chosen randomly from \mathcal{H}

$$\Pr[h(A) = h(B)] = \text{sim}(A, B)$$
A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \(\mathcal{H} \) such that for \(h \) chosen randomly from \(\mathcal{H} \)

\[
\Pr[h(A) = h(B)] = \text{sim}(A, B)
\]

Question: When is the above true in general?
A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \mathcal{H} such that for h chosen randomly from \mathcal{H}

$$\Pr[h(A) = h(B)] = \text{sim}(A, B)$$

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure $\text{sim}(\cdot, \cdot)$ with the preceding property then $d(\cdot, \cdot) = 1 - \text{sim}(\cdot, \cdot)$ is a metric and further d is embeddable in generalized Hamming distance.
Part III

Similarity and Distance Measures
Similarity and Distance

Different objects and applications drive similarity measures

Similarity between x and y large implies

Another common way is to use distances where small distances mean higher similarity
Some common measures

- Jaccard similarity measure of sets
- Cosine angle between vectors
- Distance measures: norm based measures $\| x - y \|_p$ say $p = 1, 2, \ldots$
- Hamming distance between vectors
- Edit distance between strings
- Distance measures between probability distributions: earth-mover distance, KL divergence/relative entropy (not symmetric),
Part IV

Near-Neighbor Search
Similarity estimation and search

Collection of data items/objects \mathcal{D}

We saw ways to compress objects to speed up similarity estimation between objects.

Still two problems remain:
- Find all highly similar pairs — cannot do quadratic time even with compressed hashes.
- New point x: want to know all points "similar" to x in \mathcal{D}. Linear search is not feasible.
Similarity estimation and search

Collection of data items/objects \mathcal{D}

We saw ways to compress objects to speed up similarity estimation between objects

Still two problems remain:

- find all highly similar pairs — cannot do quadratic time even with compressed hashes
- new point x: want to know all points “similar” to x in \mathcal{D}. linear search is not feasible
Near-Neighbor Search

Collection of data items/objects \mathcal{D}

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)
Near-Neighbor Search

Collection of data items/objects \mathcal{D}

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications
Near-Neighbor Search

Collection of data items/objects \mathcal{D}

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, k-d trees, space partition/filling approaches.
Near-Neighbor Search

Collection of data items/objects \mathcal{D}

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, k-d trees, space partition/filling approaches. Major drawback: curse of dimensionality for exact search
Near-Neighbor Search

Collection of data items/objects \(\mathcal{D} \)

Preprocess \(\mathcal{D} \) using small space so that given query \(x \), output all \(y \in \mathcal{D} \) with high similarity to \(x \) (or small distance to \(x \))

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, \(k \)-d trees, space partition/filling approaches. Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via locality-sensitive hashing (LSH), randomized \(k \)-d trees, etc
LSH approach

Initially developed for NN search in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

High-level ideas:

- collection of \(n \) objects \(p_1, p_2, \ldots, p_n \) in some space
- some distance/similarity measure \(d \) on pairs of objects
- create a hash function family \(\mathcal{H} \) with the property that each hash function \(h \) has “locality” preserving property
 - \(h \) maps points similar to each other (or closer in distance) to the same bucket with higher probability than it would map points that are not so similar
- Use multiple independent hash functions to create a data structure
- Hashing family depends on the similarity/distance measure