CS 498ABD: Algorithms for Big Data, Spring 2019

Similarity Estimation

Lecture 13 March 5, 2019

Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

- find all "similar" items (application: duplicate detection in documents)
- for an item x find all items in the collection similar to x (near-neighbor search, many applications)

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

- find all "similar" items (application: duplicate detection in documents)
- for an item x find all items in the collection similar to x (near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.

High-level Ideas

- How to measure similarity/dissimilarity? Proxy functions for estimating/capturing similarity
- Focus only on *highly* similar items rather than try to find similarity for all pairs
- Compression/sketching/hashing to create compact representations of objects
- Fast/approximate near-neighbor search via ideas such as locality-sensitive-hashing, clustering etc

3

Topics

- Jaccard similarity for sets and minhash
- Angular distance and simhash
- Locality-sensitive hashing

Part I

Jaccard Similarity and Min-wise independent Hashing

Motivation: How do we detect near-duplicate text documents? Web pages, papers, homeworks, ...?

Set Similarity

Motivation: How do we detect near-duplicate text documents? Web pages, papers, homeworks, ...?

Model documents as (multi)sets of "words" or more generally "shingles"

- A very large set of words/singles
- Each document is a set of words/shingles
- Large number of documents and each document is sparse in space of words/shingles

Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as $|S \cap T|$

```
\frac{|S|+|T|}{|S \cup T|}
```

and denoted by SIM(S, T).

Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as

```
\frac{|S \cap T|}{|S \cup T|}
```

and denoted by SIM(S, T).

Assumption: S, T very similar if SIM(S, T) $\geq \alpha$ for some fixed threshold α . Say $\alpha = 0.7$

Jaccard similarity of sets

Definition: given two sets S, T the Jaccard similarity between S and T is defined as

 $\frac{|S \cap T|}{|S \cup T|}$

and denoted by SIM(S, T).

Assumption: S, T very similar if SIM(S, T) $\geq \alpha$ for some fixed threshold α . Say $\alpha = 0.7$

Question: Given many documents how do we find similar documents?

Let *n* be the size of vocabulary

For a permutation σ of [n] and set S let

 $\sigma_{\min}(S) = \min\{\sigma(i) \mid i \in S\}$

Let *n* be the size of vocabulary

```
For a permutation \sigma of [n] and set S let
```

 $\sigma_{\min}(S) = \min\{\sigma(i) \mid i \in S\}$

Example:

Lemma

Let **S**, **T** be two subsets of [**n**]. Suppose σ is a random permutation of [**n**]. Then

$$\Pr[\sigma_{\min}(S) = \sigma_{\min}(T)] = \frac{|S \cap T|}{|S \cup T|}.$$

- Pick ℓ random permutations $\sigma^1, \sigma^2, \ldots, \sigma^\ell$
- For each set S store a ℓ -tuple $(\sigma_{\min}^1(S), \ldots, \sigma_{\min}^\ell(S))$
- To check similarity between S and T let $s = |\{i \mid \sigma_{\min}^{i}(S) = \sigma_{\min}^{i}(T)\}|$. Output estimator $Z = SIM(S, T) = s/\ell$

- Pick ℓ random permutations $\sigma^1, \sigma^2, \ldots, \sigma^\ell$
- For each set S store a ℓ -tuple $(\sigma_{\min}^1(S), \ldots, \sigma_{\min}^\ell(S))$
- To check similarity between S and T let $s = |\{i \mid \sigma_{\min}^{i}(S) = \sigma_{\min}^{i}(T)\}|$. Output estimator $Z = SIM(S, T) = s/\ell$
- Z is an exact estimator for SIM(S, T).

Exercise: Suppose SIM(S, T) $\geq \alpha$. How large should ℓ be such that $\Pr[Z < (1 - \epsilon)\alpha] < \delta$?

In practice:

- Pick some sufficiently large ℓ
- Use "shingles" instead of "words": depends on application
- Store for each S the compact "sketch/signature" $(\sigma_{\min}^1(S), \ldots, \sigma_{\min}^\ell(S))$
- Do further optimizations for performance/space

See Chapter 3 in Mining Massive Data Sets book by Leskovic, Rajaraman, Ullman.

Random permutation?

Random permutation like a random hash function is complex

- Cannot store compactly
- Computing $\sigma_{\min}(S)$ expensive

Need pseudorandom permutations that suffice.

[Broder-Charikar-Frieze-Mitzemacher]

Given n, S_n is the set of n! permutations

Want a family $\mathcal{F} \subseteq S_n$ of permutations such that picking a random σ from \mathcal{F} behaves like a random permutation (uniformly chosen from S_n)

[Broder-Charikar-Frieze-Mitzemacher]

Given n, S_n is the set of n! permutations

Want a family $\mathcal{F} \subseteq S_n$ of permutations such that picking a random σ from \mathcal{F} behaves like a random permutation (uniformly chosen from S_n)

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F} ,

$$\Pr[\sigma_{\min}(X) = a] = rac{1}{|X|}.$$

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F} ,

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F} ,

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.

Question: is there a small \mathcal{F} ? Not obvious there is a non-trivial family.

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F} ,

$$\Pr[\sigma_{\min}(X) = a] = \frac{1}{|X|}.$$

Exercise: Minwise independent permutations suffice for Jaccard similarity estimation.

Question: is there a small \mathcal{F} ? Not obvious there is a non-trivial family.

- There exist minwise independent families of size 4ⁿ
- Any minwise independent family must have size $e^{(1-o(1))n}$

Hence we need to relax the requirement further.

Chandra (UIUC)

CS498ABD

14

Definition

A family $\mathcal{F} \subseteq S_n$ is a minwise independent family of permutations if for every $X \subseteq [n]$ and $a \in X$, for a σ chosen uniformly from \mathcal{F} ,

$$\Pr[\sigma_{\min}(X) = a] = rac{1}{|X|}.$$

Two relaxations:

• ϵ -approximate minwise independence.

$$\frac{1-\epsilon}{|X|} \leq \Pr[\sigma_{\min}(X) = a] \leq \frac{1+\epsilon}{|X|}.$$

• Need condition to hold only for sets X where $|X| \le k$ for some k < n. Sufficient for applications where sets are much smaller Chandra (UIUC) CS498ABD 15 Spring 2019 15 / 30

Relaxation of Minwise Independence

Definition

A family $\mathcal{F} \subseteq S_n$ is (ϵ, k) min-wise independent family if for all $X \subset [n]$ such that $|X| \leq k$, if σ is chosen uniformly from \mathcal{F} ,

$$\frac{1-\epsilon}{|X|} \leq \Pr[\sigma_{\min}(X) = a] \leq \frac{1+\epsilon}{|X|}.$$

Minwise Independence and Hashing

Question: Is there a connection between minwise independent permutations and hashing?

Suppose \mathcal{H} is a family of *t*-wise independent hash functions from [n] to [n]. Let $h \in \mathcal{H}$. Why is *h* not a permutation?

Minwise Independence and Hashing

Question: Is there a connection between minwise independent permutations and hashing?

Suppose \mathcal{H} is a family of *t*-wise independent hash functions from [n] to [n]. Let $h \in \mathcal{H}$. Why is h not a permutation? Because of collisions

Suppose $h: [n] \rightarrow [m]$ where $m \gg n$ then h has very low probability of collisions. Then would h behave like a minwise independent permutation?

Theorem (Indyk)

Let \mathcal{H} be a *t*-wis independent family of hash functions from [n] to [n] where $t = \Omega(\log \frac{1}{\epsilon})$. Then \mathcal{H} is a (ϵ, k) minwise-independent family of permutations for $k = \Omega(\epsilon n)$.

Thus hash functions from [n] to [n] effectively suffice for minwise independence and can be used in minhashing.

Minwise independence and Distinct Elements

Do you see connection between minwise independent permutations/hashing and Distinct Element sampling?

Exercise: How would you used minwise independent permutations to sample near-uniformly from the set of distinct elements in a stream?

Part II

Angular Distance and Simhash

Given a collection of vectors v_1, v_2, \ldots, v_n in \mathbb{R}^d representing some data objects.

Two vectors $\boldsymbol{u}, \boldsymbol{v}$ "similar" if they point roughly in the same direction

Define dist $(u, v) = \theta(u, v)/\pi$ where $\theta(u, v)$ is angle between vectors u and v. Assuming u, v are unit vectors wlog we have $u \cdot v = cos(\theta(u, v))$. Similarity is 1 - dist(u, v)

Sim Hash

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector *r*
- For each v_i set $h_r(v_i) = \operatorname{sign}(r \cdot v_i)$

Sim Hash

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector *r*
- For each v_i set $h_r(v_i) = \operatorname{sign}(r \cdot v_i)$

Lemma $\Pr[h_r(v_i) = h_r(v_i)] = \theta(v_i, v_i)/\pi.$

[Charikar] as a special case of a connection between rounding algorithms and hashing

- Pick random hyperplane/unit vector *r*
- For each v_i set $h_r(v_i) = \operatorname{sign}(r \cdot v_i)$

Lemma

$$\Pr[h_r(v_i) = h_r(v_j)] = \theta(v_i, v_j)/\pi.$$

Using several random hyperplanes r_1, r_2, \ldots, r_ℓ we create a compact hash value/sketch for angle similarity

A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \mathcal{H} such that for h chosen randomly from \mathcal{H}

$$\Pr[h(A) = h(B)] = sim(A, B)$$

A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \mathcal{H} such that for h chosen randomly from \mathcal{H}

$$\Pr[h(A) = h(B)] = sim(A, B)$$

Question: When is the above true in general?

A general observation

For Jaccard similarity and angular similarity we had the property that there is a family of hash functions \mathcal{H} such that for h chosen randomly from \mathcal{H}

$$\Pr[h(A) = h(B)] = sim(A, B)$$

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure $sim(\cdot, \cdot)$ with the preceding property then $d(\cdot, \cdot) = 1 - sim(\cdot, \cdot)$ is a metric and further d is embeddable in generalized Hamming distance.

Part III

Similarity and Distance Measures

Similarity and Distance

Different objects and applications drive similarity measures

Similarity between x and y large implies

Another common way is to use *distances* where small distances mean higher similarity

Some common measures

- Jaccard similarity measure of sets
- Cosine angle between vectors
- Distance measures: norm based measures ||x y||_p say
 p = 1, 2, ...
- Hamming distance between vectors
- Edit distance between strings
- Distance measures between probability distributions: earth-mover distance, KL divergence/relative entropy (not symmetric),

Part IV

Near-Neighbor Search

Similarity estimation and search

Collection of data items/objects ${m {\cal D}}$

We saw ways to compress objects to speed up similarity estimation between objects

Similarity estimation and search

Collection of data items/objects ${m {\cal D}}$

We saw ways to compress objects to speed up similarity estimation between objects

Still two problems remain:

- find all highly similar pairs cannot do quadratic time even with compressed hashes
- new point x: want to know all points "similar" to x in D. linear search is not feasible

Near-Neighbor Search

Collection of data items/objects ${m {\cal D}}$

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Near-Neighbor Search

Collection of data items/objects ${m {\cal D}}$

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Collection of data items/objects ${m {\cal D}}$

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, *k*-d trees, space partition/filling approaches.

Collection of data items/objects ${m {\cal D}}$

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, *k*-d trees, space partition/filling approaches. **Major drawback:** curse of dimensionality for exact search Collection of data items/objects ${m {\cal D}}$

Preprocess \mathcal{D} using small space so that given query x, output all $y \in \mathcal{D}$ with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi diagrams, *k*-d trees, space partition/filling approaches. **Major drawback:** curse of dimensionality for exact search

Modern/recent approaches: *approximate* NN search via locality-sensitive hashing (LSH), randomized **k**-d trees, etc

Initially developed for NN search in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

High-level ideas:

- collection of n objects p_1, p_2, \ldots, p_n in some space
- some distance/similarity measure *d* on pairs of objects
- create a hash function family *H* with the property that each hash function *h* has "locality" preserving property
- *h* maps points similar to each other (or closer in distance) to the same bucket with higher probability than it would map points that are not so similar
- Use multiple independent hash functions to create a data structure
- Hashing family depends on the similarity/distance measure

Chandra (UIUC)