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Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

find all “similar” items (application: duplicate detection in
documents)

for an item x find all items in the collection similar to x
(near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.
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High-level Ideas

How to measure similarity/dissimilarity? Proxy functions for
estimating/capturing similarity

Focus only on highly similar items rather than try to find
similarity for all pairs

Compression/sketching/hashing to create compact
representations of objects

Fast/approximate near-neighbor search via ideas such as
locality-sensitive-hashing, clustering etc
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Topics

Jaccard similarity for sets and minhash

Angular distance and simhash

Locality-sensitive hashing
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Part I

Jaccard Similarity and Min-wise
independent Hashing
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Set Similarity

Motivation: How do we detect near-duplicate text documents? Web
pages, papers, homeworks, . . .?

Model documents as (multi)sets of “words” or more generally
“shingles”

A very large set of words/singles

Each document is a set of words/shingles

Large number of documents and each document is sparse in
space of words/shingles
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Jaccard similarity of sets

Definition: given two sets S,T the Jaccard similarity between S
and T is defined as

|S ∩ T |
|S ∪ T |

and denoted by SIM(S,T ).

Assumption: S,T very similar if SIM(S,T ) ≥ α for some fixed
threshold α. Say α = 0.7

Question: Given many documents how do we find similar
documents?
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Min Hashing

Let n be the size of vocabulary

For a permutation σ of [n] and set S let

σmin(S) = min{σ(i) | i ∈ S}

Example:
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Min Hashing

Lemma
Let S,T be two subsets of [n]. Suppose σ is a random permutation
of [n]. Then

Pr[σmin(S) = σmin(T )] =
|S ∩ T |
|S ∪ T |

.
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Min Hashing

Pick ` random permutations σ1, σ2, . . . , σ`

For each set S store a `-tuple (σ1
min(S), . . . , σ`min(S))

To check similarity between S and T let
s = |{i | σi

min(S) = σi
min(T )}|. Output estimator

Z = SIM(S,T ) = s/`

Z is an exact estimator for SIM(S,T ).

Exercise: Suppose SIM(S,T ) ≥ α. How large should ` be such
that Pr[Z < (1− ε)α] < δ?
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Min Hashing

In practice:

Pick some sufficiently large `

Use “shingles” instead of “words”: depends on application

Store for each S the compact “sketch/signature”
(σ1

min(S), . . . , σ`min(S))

Do further optimizations for performance/space

See Chapter 3 in Mining Massive Data Sets book by Leskovic,
Rajaraman, Ullman.
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Random permutation?

Random permutation like a random hash function is complex

Cannot store compactly

Computing σmin(S) expensive

Need pseudorandom permutations that suffice.
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Minwise Independent Permutations

[Broder-Charikar-Frieze-Mitzemacher]

Given n, Sn is the set of n! permutations

Want a family F ⊆ Sn of permutations such that picking a random
σ from F behaves like a random permutation (uniformly chosen
from Sn)

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X ) = a] =
1

|X |
.
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Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X ) = a] =
1

|X |
.

Exercise: Minwise independent permutations suffice for Jaccard
similarity estimation.

Question: is there a small F? Not obvious there is a non-trivial
family.

There exist minwise independent families of size 4n

Any minwise independent family must have size e(1−o(1))n

Hence we need to relax the requirement further.
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Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X ) = a] =
1

|X |
.

Two relaxations:

ε-approximate minwise independence.

1− ε
|X |

≤ Pr[σmin(X ) = a] ≤
1 + ε

|X |
.

Need condition to hold only for sets X where |X | ≤ k for some
k < n. Sufficient for applications where sets are much smaller
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Relaxation of Minwise Independence

Definition
A family F ⊆ Sn is (ε, k) min-wise independent family if for all
X ⊂ [n] such that |X | ≤ k , if σ is chosen uniformly from F ,

1− ε
|X |

≤ Pr[σmin(X ) = a] ≤
1 + ε

|X |
.
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Minwise Independence and Hashing

Question: Is there a connection between minwise independent
permutations and hashing?

Suppose H is a family of t-wise independent hash functions from [n]
to [n]. Let h ∈ H. Why is h not a permutation?

Because of
collisions

Suppose h : [n]→ [m] where m � n then h has very low
probability of collisions. Then would h behave like a minwise
independent permutation?
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Minwise Independence and Hashing

Theorem (Indyk)

Let H be a t-wis independent family of hash functions from [n] to
[n] where t = Ω(log 1

ε
). Then H is a (ε, k) minwise-independent

family of permutations for k = Ω(εn).

Thus hash functions from [n] to [n] effectively suffice for minwise
independence and can be used in minhashing.
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Minwise independence and Distinct Elements

Do you see connection between minwise independent
permutations/hashing and Distinct Element sampling?

Exercise: How would you used minwise independent permutations to
sample near-uniformly from the set of distinct elements in a stream?
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Part II

Angular Distance and Simhash

Chandra (UIUC) CS498ABD 20 Spring 2019 20 / 30



Angular distance

Given a collection of vectors v1, v2, . . . , vn in Rd representing some
data objects.

Two vectors u, v “similar” if they point roughly in the same direction

Define dist(u, v) = θ(u, v)/π where θ(u, v) is angle between
vectors u and v . Assuming u, v are unit vectors wlog we have
u · v = cos(θ(u, v)).
Similarity is 1− dist(u, v)
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Sim Hash

[Charikar] as a special case of a connection between rounding
algorithms and hashing

Pick random hyperplane/unit vector r
For each vi set hr(vi) = sign(r · vi)

Lemma
Pr[hr(vi) = hr(vj)] = θ(vi , vj)/π.

Using several random hyperplanes r1, r2, . . . , r` we create a compact
hash value/sketch for angle similarity
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A general observation

For Jaccard similarity and angular similarity we had the property that
there is a family of hash functions H such that for h chosen
randomly from H

Pr[h(A) = h(B)] = sim(A,B)

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure sim(·, ·) with the
preceding property then d(·, ·) = 1− sim(·, ·) is a metric and
further d is embeddable in generalized Hamming distance.
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Part III

Similarity and Distance Measures
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Similarity and Distance

Different objects and applications drive similarity measures

Similarity between x and y large implies

Another common way is to use distances where small distances mean
higher similarity
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Some common measures

Jaccard similarity measure of sets

Cosine angle between vectors

Distance measures: norm based measures ‖x − y‖p say
p = 1, 2, . . .

Hamming distance between vectors

Edit distance between strings

Distance measures between probability distributions: earth-mover
distance, KL divergence/relative entropy (not symmetric),
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Part IV

Near-Neighbor Search
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Similarity estimation and search

Collection of data items/objects D

We saw ways to compress objects to speed up similarity estimation
between objects

Still two problems remain:

find all highly similar pairs — cannot do quadratic time even
with compressed hashes

new point x : want to know all points “similar” to x in D. linear
search is not feasible
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Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.
Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc
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LSH approach

Initially developed for NN search in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

High-level ideas:

collection of n objects p1, p2, . . . , pn in some space

some distance/similarity measure d on pairs of objects

create a hash function family H with the property that each
hash function h has “locality” preserving property

h maps points similar to each other (or closer in distance) to the
same bucket with higher probability than it would map points
that are not so similar

Use multiple independent hash functions to create a data
structure

Hashing family depends on the similarity/distance measure
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