
CS 498ABD: Algorithms for Big Data, Spring 2019

Similarity Estimation
Lecture 13
March 5, 2019

Chandra (UIUC) CS498ABD 1 Spring 2019 1 / 30

Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

find all “similar” items (application: duplicate detection in
documents)

for an item x find all items in the collection similar to x
(near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.

Chandra (UIUC) CS498ABD 2 Spring 2019 2 / 30

Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

find all “similar” items (application: duplicate detection in
documents)

for an item x find all items in the collection similar to x
(near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.

Chandra (UIUC) CS498ABD 2 Spring 2019 2 / 30

Similar Items

Modern data: often unstructured and high-dimensional

Examples: documents, web pages, reviews, images, audio, video,

Given a collection of objects from a data collection:

find all “similar” items (application: duplicate detection in
documents)

for an item x find all items in the collection similar to x
(near-neighbor search, many applications)

Comparing two items expensive. Comparing all pairs, infeasible.

Chandra (UIUC) CS498ABD 2 Spring 2019 2 / 30

High-level Ideas

How to measure similarity/dissimilarity? Proxy functions for
estimating/capturing similarity

Focus only on highly similar items rather than try to find
similarity for all pairs

Compression/sketching/hashing to create compact
representations of objects

Fast/approximate near-neighbor search via ideas such as
locality-sensitive-hashing, clustering etc

Chandra (UIUC) CS498ABD 3 Spring 2019 3 / 30

Topics

Jaccard similarity for sets and minhash

Angular distance and simhash

Locality-sensitive hashing

Chandra (UIUC) CS498ABD 4 Spring 2019 4 / 30

Part I

Jaccard Similarity and Min-wise
independent Hashing

Chandra (UIUC) CS498ABD 5 Spring 2019 5 / 30

Set Similarity

Motivation: How do we detect near-duplicate text documents? Web
pages, papers, homeworks, . . .?

Model documents as (multi)sets of “words” or more generally
“shingles”

A very large set of words/singles

Each document is a set of words/shingles

Large number of documents and each document is sparse in
space of words/shingles

Chandra (UIUC) CS498ABD 6 Spring 2019 6 / 30

Set Similarity

Motivation: How do we detect near-duplicate text documents? Web
pages, papers, homeworks, . . .?

Model documents as (multi)sets of “words” or more generally
“shingles”

A very large set of words/singles

Each document is a set of words/shingles

Large number of documents and each document is sparse in
space of words/shingles

Chandra (UIUC) CS498ABD 6 Spring 2019 6 / 30

Jaccard similarity of sets

Definition: given two sets S,T the Jaccard similarity between S
and T is defined as

|S ∩ T |
|S ∪ T |

and denoted by SIM(S,T).

Assumption: S,T very similar if SIM(S,T) ≥ α for some fixed
threshold α. Say α = 0.7

Question: Given many documents how do we find similar
documents?

Chandra (UIUC) CS498ABD 7 Spring 2019 7 / 30

Jaccard similarity of sets

Definition: given two sets S,T the Jaccard similarity between S
and T is defined as

|S ∩ T |
|S ∪ T |

and denoted by SIM(S,T).

Assumption: S,T very similar if SIM(S,T) ≥ α for some fixed
threshold α. Say α = 0.7

Question: Given many documents how do we find similar
documents?

Chandra (UIUC) CS498ABD 7 Spring 2019 7 / 30

Jaccard similarity of sets

Definition: given two sets S,T the Jaccard similarity between S
and T is defined as

|S ∩ T |
|S ∪ T |

and denoted by SIM(S,T).

Assumption: S,T very similar if SIM(S,T) ≥ α for some fixed
threshold α. Say α = 0.7

Question: Given many documents how do we find similar
documents?

Chandra (UIUC) CS498ABD 7 Spring 2019 7 / 30

Min Hashing

Let n be the size of vocabulary

For a permutation σ of [n] and set S let

σmin(S) = min{σ(i) | i ∈ S}

Example:

Chandra (UIUC) CS498ABD 8 Spring 2019 8 / 30

Min Hashing

Let n be the size of vocabulary

For a permutation σ of [n] and set S let

σmin(S) = min{σ(i) | i ∈ S}

Example:

Chandra (UIUC) CS498ABD 8 Spring 2019 8 / 30

Min Hashing

Lemma
Let S,T be two subsets of [n]. Suppose σ is a random permutation
of [n]. Then

Pr[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

.

Chandra (UIUC) CS498ABD 9 Spring 2019 9 / 30

Min Hashing

Pick ` random permutations σ1, σ2, . . . , σ`

For each set S store a `-tuple (σ1
min(S), . . . , σ`min(S))

To check similarity between S and T let
s = |{i | σi

min(S) = σi
min(T)}|. Output estimator

Z = SIM(S,T) = s/`

Z is an exact estimator for SIM(S,T).

Exercise: Suppose SIM(S,T) ≥ α. How large should ` be such
that Pr[Z < (1− ε)α] < δ?

Chandra (UIUC) CS498ABD 10 Spring 2019 10 / 30

Min Hashing

Pick ` random permutations σ1, σ2, . . . , σ`

For each set S store a `-tuple (σ1
min(S), . . . , σ`min(S))

To check similarity between S and T let
s = |{i | σi

min(S) = σi
min(T)}|. Output estimator

Z = SIM(S,T) = s/`

Z is an exact estimator for SIM(S,T).

Exercise: Suppose SIM(S,T) ≥ α. How large should ` be such
that Pr[Z < (1− ε)α] < δ?

Chandra (UIUC) CS498ABD 10 Spring 2019 10 / 30

Min Hashing

In practice:

Pick some sufficiently large `

Use “shingles” instead of “words”: depends on application

Store for each S the compact “sketch/signature”
(σ1

min(S), . . . , σ`min(S))

Do further optimizations for performance/space

See Chapter 3 in Mining Massive Data Sets book by Leskovic,
Rajaraman, Ullman.

Chandra (UIUC) CS498ABD 11 Spring 2019 11 / 30

Random permutation?

Random permutation like a random hash function is complex

Cannot store compactly

Computing σmin(S) expensive

Need pseudorandom permutations that suffice.

Chandra (UIUC) CS498ABD 12 Spring 2019 12 / 30

Minwise Independent Permutations

[Broder-Charikar-Frieze-Mitzemacher]

Given n, Sn is the set of n! permutations

Want a family F ⊆ Sn of permutations such that picking a random
σ from F behaves like a random permutation (uniformly chosen
from Sn)

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Chandra (UIUC) CS498ABD 13 Spring 2019 13 / 30

Minwise Independent Permutations

[Broder-Charikar-Frieze-Mitzemacher]

Given n, Sn is the set of n! permutations

Want a family F ⊆ Sn of permutations such that picking a random
σ from F behaves like a random permutation (uniformly chosen
from Sn)

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Chandra (UIUC) CS498ABD 13 Spring 2019 13 / 30

Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Exercise: Minwise independent permutations suffice for Jaccard
similarity estimation.

Question: is there a small F? Not obvious there is a non-trivial
family.

There exist minwise independent families of size 4n

Any minwise independent family must have size e(1−o(1))n

Hence we need to relax the requirement further.

Chandra (UIUC) CS498ABD 14 Spring 2019 14 / 30

Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Exercise: Minwise independent permutations suffice for Jaccard
similarity estimation.
Question: is there a small F? Not obvious there is a non-trivial
family.

There exist minwise independent families of size 4n

Any minwise independent family must have size e(1−o(1))n

Hence we need to relax the requirement further.

Chandra (UIUC) CS498ABD 14 Spring 2019 14 / 30

Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Exercise: Minwise independent permutations suffice for Jaccard
similarity estimation.
Question: is there a small F? Not obvious there is a non-trivial
family.

There exist minwise independent families of size 4n

Any minwise independent family must have size e(1−o(1))n

Hence we need to relax the requirement further.
Chandra (UIUC) CS498ABD 14 Spring 2019 14 / 30

Minwise Independent Permutations

Definition
A family F ⊆ Sn is a minwise independent family of permutations if
for every X ⊆ [n] and a ∈ X , for a σ chosen uniformly from F ,

Pr[σmin(X) = a] =
1

|X |
.

Two relaxations:

ε-approximate minwise independence.

1− ε
|X |

≤ Pr[σmin(X) = a] ≤
1 + ε

|X |
.

Need condition to hold only for sets X where |X | ≤ k for some
k < n. Sufficient for applications where sets are much smaller
than nChandra (UIUC) CS498ABD 15 Spring 2019 15 / 30

Relaxation of Minwise Independence

Definition
A family F ⊆ Sn is (ε, k) min-wise independent family if for all
X ⊂ [n] such that |X | ≤ k , if σ is chosen uniformly from F ,

1− ε
|X |

≤ Pr[σmin(X) = a] ≤
1 + ε

|X |
.

Chandra (UIUC) CS498ABD 16 Spring 2019 16 / 30

Minwise Independence and Hashing

Question: Is there a connection between minwise independent
permutations and hashing?

Suppose H is a family of t-wise independent hash functions from [n]
to [n]. Let h ∈ H. Why is h not a permutation?

Because of
collisions

Suppose h : [n]→ [m] where m � n then h has very low
probability of collisions. Then would h behave like a minwise
independent permutation?

Chandra (UIUC) CS498ABD 17 Spring 2019 17 / 30

Minwise Independence and Hashing

Question: Is there a connection between minwise independent
permutations and hashing?

Suppose H is a family of t-wise independent hash functions from [n]
to [n]. Let h ∈ H. Why is h not a permutation? Because of
collisions

Suppose h : [n]→ [m] where m � n then h has very low
probability of collisions. Then would h behave like a minwise
independent permutation?

Chandra (UIUC) CS498ABD 17 Spring 2019 17 / 30

Minwise Independence and Hashing

Theorem (Indyk)

Let H be a t-wis independent family of hash functions from [n] to
[n] where t = Ω(log 1

ε
). Then H is a (ε, k) minwise-independent

family of permutations for k = Ω(εn).

Thus hash functions from [n] to [n] effectively suffice for minwise
independence and can be used in minhashing.

Chandra (UIUC) CS498ABD 18 Spring 2019 18 / 30

Minwise independence and Distinct Elements

Do you see connection between minwise independent
permutations/hashing and Distinct Element sampling?

Exercise: How would you used minwise independent permutations to
sample near-uniformly from the set of distinct elements in a stream?

Chandra (UIUC) CS498ABD 19 Spring 2019 19 / 30

Part II

Angular Distance and Simhash

Chandra (UIUC) CS498ABD 20 Spring 2019 20 / 30

Angular distance

Given a collection of vectors v1, v2, . . . , vn in Rd representing some
data objects.

Two vectors u, v “similar” if they point roughly in the same direction

Define dist(u, v) = θ(u, v)/π where θ(u, v) is angle between
vectors u and v . Assuming u, v are unit vectors wlog we have
u · v = cos(θ(u, v)).
Similarity is 1− dist(u, v)

Chandra (UIUC) CS498ABD 21 Spring 2019 21 / 30

Sim Hash

[Charikar] as a special case of a connection between rounding
algorithms and hashing

Pick random hyperplane/unit vector r
For each vi set hr(vi) = sign(r · vi)

Lemma
Pr[hr(vi) = hr(vj)] = θ(vi , vj)/π.

Using several random hyperplanes r1, r2, . . . , r` we create a compact
hash value/sketch for angle similarity

Chandra (UIUC) CS498ABD 22 Spring 2019 22 / 30

Sim Hash

[Charikar] as a special case of a connection between rounding
algorithms and hashing

Pick random hyperplane/unit vector r
For each vi set hr(vi) = sign(r · vi)

Lemma
Pr[hr(vi) = hr(vj)] = θ(vi , vj)/π.

Using several random hyperplanes r1, r2, . . . , r` we create a compact
hash value/sketch for angle similarity

Chandra (UIUC) CS498ABD 22 Spring 2019 22 / 30

Sim Hash

[Charikar] as a special case of a connection between rounding
algorithms and hashing

Pick random hyperplane/unit vector r
For each vi set hr(vi) = sign(r · vi)

Lemma
Pr[hr(vi) = hr(vj)] = θ(vi , vj)/π.

Using several random hyperplanes r1, r2, . . . , r` we create a compact
hash value/sketch for angle similarity

Chandra (UIUC) CS498ABD 22 Spring 2019 22 / 30

A general observation

For Jaccard similarity and angular similarity we had the property that
there is a family of hash functions H such that for h chosen
randomly from H

Pr[h(A) = h(B)] = sim(A,B)

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure sim(·, ·) with the
preceding property then d(·, ·) = 1− sim(·, ·) is a metric and
further d is embeddable in generalized Hamming distance.

Chandra (UIUC) CS498ABD 23 Spring 2019 23 / 30

A general observation

For Jaccard similarity and angular similarity we had the property that
there is a family of hash functions H such that for h chosen
randomly from H

Pr[h(A) = h(B)] = sim(A,B)

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure sim(·, ·) with the
preceding property then d(·, ·) = 1− sim(·, ·) is a metric and
further d is embeddable in generalized Hamming distance.

Chandra (UIUC) CS498ABD 23 Spring 2019 23 / 30

A general observation

For Jaccard similarity and angular similarity we had the property that
there is a family of hash functions H such that for h chosen
randomly from H

Pr[h(A) = h(B)] = sim(A,B)

Question: When is the above true in general?

Lemma (Charikar)

If there is a hash family for a similarity measure sim(·, ·) with the
preceding property then d(·, ·) = 1− sim(·, ·) is a metric and
further d is embeddable in generalized Hamming distance.

Chandra (UIUC) CS498ABD 23 Spring 2019 23 / 30

Part III

Similarity and Distance Measures

Chandra (UIUC) CS498ABD 24 Spring 2019 24 / 30

Similarity and Distance

Different objects and applications drive similarity measures

Similarity between x and y large implies

Another common way is to use distances where small distances mean
higher similarity

Chandra (UIUC) CS498ABD 25 Spring 2019 25 / 30

Some common measures

Jaccard similarity measure of sets

Cosine angle between vectors

Distance measures: norm based measures ‖x − y‖p say
p = 1, 2, . . .

Hamming distance between vectors

Edit distance between strings

Distance measures between probability distributions: earth-mover
distance, KL divergence/relative entropy (not symmetric),

Chandra (UIUC) CS498ABD 26 Spring 2019 26 / 30

Part IV

Near-Neighbor Search

Chandra (UIUC) CS498ABD 27 Spring 2019 27 / 30

Similarity estimation and search

Collection of data items/objects D

We saw ways to compress objects to speed up similarity estimation
between objects

Still two problems remain:

find all highly similar pairs — cannot do quadratic time even
with compressed hashes

new point x : want to know all points “similar” to x in D. linear
search is not feasible

Chandra (UIUC) CS498ABD 28 Spring 2019 28 / 30

Similarity estimation and search

Collection of data items/objects D

We saw ways to compress objects to speed up similarity estimation
between objects

Still two problems remain:

find all highly similar pairs — cannot do quadratic time even
with compressed hashes

new point x : want to know all points “similar” to x in D. linear
search is not feasible

Chandra (UIUC) CS498ABD 28 Spring 2019 28 / 30

Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.
Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc

Chandra (UIUC) CS498ABD 29 Spring 2019 29 / 30

Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.
Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc

Chandra (UIUC) CS498ABD 29 Spring 2019 29 / 30

Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.

Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc

Chandra (UIUC) CS498ABD 29 Spring 2019 29 / 30

Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.
Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc

Chandra (UIUC) CS498ABD 29 Spring 2019 29 / 30

Near-Neighbor Search

Collection of data items/objects D

Preprocess D using small space so that given query x , output all
y ∈ D with high similarity to x (or small distance to x)

Fundamental data structure problem with many applications

Classical (exact) solution approaches from geometry: Voronoi
diagrams, k-d trees, space partition/filling approaches.
Major drawback: curse of dimensionality for exact search

Modern/recent approaches: approximate NN search via
locality-sensitive hashing (LSH), randomized k-d trees, etc

Chandra (UIUC) CS498ABD 29 Spring 2019 29 / 30

LSH approach

Initially developed for NN search in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

High-level ideas:

collection of n objects p1, p2, . . . , pn in some space

some distance/similarity measure d on pairs of objects

create a hash function family H with the property that each
hash function h has “locality” preserving property

h maps points similar to each other (or closer in distance) to the
same bucket with higher probability than it would map points
that are not so similar

Use multiple independent hash functions to create a data
structure

Hashing family depends on the similarity/distance measure

Chandra (UIUC) CS498ABD 30 Spring 2019 30 / 30

	Jaccard Similarity and Min-wise independent Hashing
	Angular Distance and Simhash
	Similarity and Distance Measures
	Near-Neighbor Search

