F_2 Estimation and Intro to Sketching

Lecture 08
February 07, 2019
Part I

F_2 Estimation
Estimating F_2

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$

Question: Estimate $F_2 = \sum_{i=1}^{m} f_i^2$ in small space.

Using generic AMS sampling scheme we can do this in $O(\sqrt{n \log n})$ space. Can we do it better?
AMS Scheme for F_2

AMS-F_2-Estimate:

Let $h : [n] \rightarrow \{-1, 1\}$ be chosen from a 4-wise independent hash family \mathcal{H}.

1. $z \leftarrow 0$
2. While (stream is not empty) do
 - a_j is current item
 - $z \leftarrow z + h(a_j)$
3. endwhile
4. Output z^2
AMS Scheme for F_2

AMS-F_2-Estimate:

Let $h : [n] \rightarrow \{-1, 1\}$ be chosen from a 4-wise independent hash family \mathcal{H}.

$z \leftarrow 0$

While (stream is not empty) do

- a_j is current item
- $z \leftarrow z + h(a_j)$

endWhile

Output z^2

AMS-F_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variables that are 4-wise independent.

$z \leftarrow 0$

While (stream is not empty) do

- a_j is current item
- $z \leftarrow z + Y_{a_j}$

endWhile

Output z^2
Analysis

\[Z = \sum_{i=1}^{n} f_i Y_i \text{ and output is } Z^2 \]
Analysis

\[Z = \sum_{i=1}^{n} f_i Y_i \] and output is \[Z^2 \]

- \(E[Y_i] = 0 \) and \(\text{Var}(Y_i) = E[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent \(E[Y_i Y_j] = 0 \).
Analysis

\[Z = \sum_{i=1}^{n} f_i Y_i \] and output is \(Z^2 \)

- \(\mathbb{E}[Y_i] = 0 \) and \(\text{Var}(Y_i) = \mathbb{E}[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent, \(\mathbb{E}[Y_i Y_j] = 0 \).

\[Z^2 = \sum_i f_i^2 Y_i^2 + 2 \sum_{i \neq j} f_i f_j Y_i Y_j \]

and hence

\[\mathbb{E}[Z^2] = \sum_i f_i^2 = F_2. \]
What is $\text{Var}(Z^2)$?
What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$$
What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.
What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell]$$

$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2.$$
\[
\text{Var}(Z^2) = E[Z^4] - (E[Z^2])^2
\]

\[
= F_4 - F_2^2 + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2
\]

\[
= F_4 - (F_4 + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2) + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2
\]

\[
= 4 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2
\]

\[
\leq 2F_2^2.
\]
Output is Z^2: and $\mathbb{E}[Z^2] = F_2$ and $\text{Var}(Z^4) \leq 2F_2^2$

- Reduce variance by averaging $\frac{8}{\epsilon^2}$ independent estimates. Let Y be the averaged estimator.
- Apply Chebyshev to average estimator. $\Pr[|Y - F_2| \geq \epsilon F_2] \leq 1/4$.
- Reduce error probability to δ by independently doing $O(\log(1/\delta))$ estimators above.
- Total space $O(\log(1/\delta) \frac{1}{\epsilon^2} \log n)$
Observation: The estimation algorithm works even when f_i’s can be negative. What does this mean?
Geometric Interpretation

Observation: The estimation algorithm works even when f_i’s can be negative. What does this mean?

Richer model:
- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all 0’s vector. (previously we were thinking of the frequency vector f)
- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_j \in \mathbb{R}$ is a real-value: this updates x_{ij} to $x_{ij} + \Delta_j$. (Δ_j can be positive or negative)
Algorithm revisited

AMS-ℓ_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variables that are 4-wise independent.

$z \leftarrow 0$

While (stream is not empty) do

$a_j = (i_j, \Delta_j)$ is current update

$z \leftarrow z + \Delta_j Y_{i_j}$

endWhile

Output z^2
Algorithm revisited

AMS-ℓ_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variables that are 4-wise independent

$z \leftarrow 0$

While (stream is not empty) do

$a_j = (i_j, \Delta_j)$ is current update

$z \leftarrow z + \Delta_j Y_{i_j}$

endWhile

Output z^2

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.
Analysis

\[Z = \sum_{i=1}^{n} x_i Y_i \] and output is \(Z^2 \)
$Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2

- $E[Y_i] = 0$ and $\text{Var}(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent, $E[Y_i Y_j] = 0$.

$$Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$E[Z^2] = \sum_i x_i^2 = ||x||_2^2.$$
Analysis

\[Z = \sum_{i=1}^{n} x_i Y_i \] and output is \(Z^2 \)

- \(\mathbb{E}[Y_i] = 0 \) and \(\text{Var}(Y_i) = \mathbb{E}[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent \(\mathbb{E}[Y_i Y_j] = 0 \).

\[Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i\neq j} x_i x_j Y_i Y_j \]

and hence

\[\mathbb{E}[Z^2] = \sum_i x_i^2 = \|x\|_2^2. \]

And as before one can show that \(\text{Var}(Z^2) \leq 2(\mathbb{E}[Z^2])^2 \).
A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.
A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?
A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.
A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a linear sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

Is the sketch for F_2 estimation a linear sketch?
Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

AMS-ℓ₂-Sketch:

\[ℓ = c \log(1/δ)/\epsilon^2 \]

Let \(M \) be a \(ℓ \times n \) matrix with entries in \{−1, 1\} s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

\(z \) is a \(ℓ \times 1 \) vector initialized to 0

While (stream is not empty) do

\(a_j = (i_j, Δ_j) \) is current update

\(z ← z + Δ_j Me_{i_j} \)

endWhile

Output vector \(z \) as sketch.

\(M \) is compactly represented via \(ℓ \) hash functions, one per row, independently chosen from 4-wise independent hash family.
In Databases an important operation is the “join” operation

- A relation/table r of arity k consists of tuples of size k where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student database

- Given two relations r and s and a common attribute a one often needs to compute their join $r \bowtie s$ over some common attribute that they share

- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.
An Application to Join Size Estimation

In Databases an important operation is the “join” operation

- A relation/table r of arity k consists of tuples of size k where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base

- Given two relations r and s and a common attribute a one often needs to compute their join $r \bowtie s$ over some common attribute that they share

- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

Estimating $r \bowtie r$ over an attribute a is same as F_2 estimation. Why?
Sketching: a shift in perspective

- Sketching ideas have many powerful applications in theory and practice.
- In particular linear sketches are powerful. Allows one to handle negative entries and deletions. Surprisingly linear sketches are feasible in several settings.
- Connected to dimension reduction (JL Lemma), subspace embeddings and other important topics.