AMS Sampling and Estimating Frequency moments

Lecture 07
February 05, 2019
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound)

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream

Consider vector $f = (f_1, f_2, \ldots, f_n)$

For $k \geq 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: $n = 5$ and stream is 4, 2, 4, 1, 1, 1, 4, 5

Problem: Estimate F_k from stream using small memory
A more general estimation problem

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

Examples:
- Frequency moments F_k where for each i, $g_i(f_i) = h(f_i)^k$ where $h(x) = x$.
- Entropy of stream: $g(\sigma) = \sum_i f_i \log(f_i)$ (assume $0 \log 0 = 0$).
A more general estimation problem

- Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound).
- Given a stream let \(f_i \) denote the frequency of \(i \) or number of times \(i \) is seen in the stream.
- Consider vector \(f = (f_1, f_2, \ldots, f_n) \).
- Define a function \(g(\sigma) \) of stream \(\sigma \) to be \(\sum_{i=1}^{m} g_i(f_i) \) where \(g_i : \mathbb{R} \rightarrow \mathbb{R} \) is a real-valued function such that \(g_i(0) = 0 \).

Examples:
- Frequency moments \(F_k \) where for each \(i \), \(g_i(f_i) = h(f_i) \) where \(h(x) = x^k \).
- Entropy of stream: \(g(\sigma) = \sum_i f_i \log(f_i) \) (assume \(0 \log 0 = 0 \)).
AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $m(g_i(R) - g_i(R - 1))$
AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $m(g_i(R) - g_i(R - 1))$

Can be implemented in streaming setting with reservoir sampling.
Streaming Implementation

AMSEstimate:

\[
\begin{align*}
s & \leftarrow \text{null} \\
m & \leftarrow 0 \\
R & \leftarrow 0 \\
\text{While (stream is not done)} & \text{ do}
\begin{align*}
m & \leftarrow m + 1 \\
a_m & \text{ is current item} \\
& \text{Toss a biased coin that is heads with probability } \frac{1}{m} \\
& \text{If (coin turns up heads)} \\
& \quad s \leftarrow a_m \\
& \quad R \leftarrow 1 \\
& \text{Else If } (a_m == s) \\
& \quad R \leftarrow R + 1 \\
\end{align*}
\end{align*}
\]

endWhile

Output \[m(g_s(R) - g_s(R - 1))\]
Let Y be the output of the algorithm.

Lemma

\[E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i). \]
Expectation of output

Let Y be the output of the algorithm.

Lemma

$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i)$.

$Pr[e_J = i] = f_i/m$ since e_J is chosen uniformly from stream.
Let Y be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

$$Pr[e_J = i] = \frac{f_i}{m}$$ since e_J is chosen uniformly from stream.

$$E[Y] = \sum_{i \in [n]} \Pr[a_J = i] E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} m \frac{1}{f_i} (g_i(\ell) - g_i(\ell - 1))$$

$$= \sum_{i \in [n]} g_i(f_i).$$
Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some $k > 1$. That is $g_i(x) = x^k$ for each i. What is $\text{Var}(Y)$?
Suppose $g(\sigma) = F_k$ for some $k > 1$. That is $g_i(x) = x^k$ for each i. What is $\text{Var}(Y)$?

Lemma

When $g(x) = x^k$ and $k \geq 1$, $\text{Var}[Y] \leq kF_1F_{2k-1} \leq kn^{1-\frac{1}{k}}F_k^2$.
Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some $k > 1$. That is $g_i(x) = x^k$ for each i. What is $\text{Var}(Y)$?

Lemma

When $g(x) = x^k$ and $k \geq 1$, $\text{Var}[Y] \leq kF_1F_{2k-1} \leq kn^{1-\frac{1}{k}}F_k^2$.

$E[Y] = F_k$ and $\text{Var}(Y) \leq kn^{1-\frac{1}{k}}F_k^2$. Hence, if we want to use averaging and Chebyshev we need to average $h = \Omega(\frac{1}{\epsilon^2}kn^{1-\frac{1}{k}})$ parallel runs and space to get a $(1 \pm \epsilon)$ estimate to F_k with constant probability.
Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some $k > 1$. That is $g_i(x) = x^k$ for each i. What is $\text{Var}(Y)$?

Lemma

When $g(x) = x^k$ and $k \geq 1$, $\text{Var}[Y] \leq kF_1F_{2k-1} \leq kn^{1-\frac{1}{k}}F_k^2$.

$\mathbb{E}[Y] = F_k$ and $\text{Var}(Y) \leq kn^{1-\frac{1}{k}}F_k^2$. Hence, if we want to use averaging and Chebyshev we need to average $h = \Omega\left(\frac{1}{\epsilon^2}kn^{1-\frac{1}{k}}\right)$ parallel runs and space to get a $(1 \pm \epsilon)$ estimate to F_k with constant probability.

Not optimal for frequency moments but shows a general estimating mechanism.
Variance calculation

\[\text{Var}[Y] \leq \mathbb{E}[Y^2] \]

\[\leq \sum_{i \in [n]} \mathbb{Pr}[a_J = i] \sum_{\ell=1}^{m} \frac{f_i}{m} \left(\ell^k - (\ell - 1)^k \right)^2 \]

\[\leq \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{m} \frac{f_i}{f_i} \left(\ell^k - (\ell - 1)^k \right) \left(\ell^k - (\ell - 1)^k \right) \]

\[\leq m \sum_{i \in [n]} \sum_{\ell=1}^{m} k \ell^{k-1} \left(\ell^k - (\ell - 1)^k \right) \quad \text{using } x^k - (x - 1)^k \leq kx^{k-1} \]

\[\leq km \sum_{i \in [n]} f_i^{k-1} f_i^k \]

\[\leq km F_{2k-1} = kF_1 F_{2k-1}. \]
Variance calculation

Claim: For $k \geq 1$, $F_1 F_{2k-1} \leq n^{1-1/k} (F_k)^2$.
Claim: For \(k \geq 1 \), \(F_1 F_{2k-1} \leq n^{1-1/k} (F_k)^2 \).

The function \(g(x) = x^k \) is convex for \(k \geq 1 \).
Implies \(\sum_i x_i/n \leq ((\sum_i x_i^k)/n)^{1/k} \).

\[
F_1 F_{2k-1} = (\sum_i f_i)(\sum_i f_i^{2k-1}) \leq (\sum_i f_i)(F_\infty)^k(\sum_i f_i^k)
\leq (\sum_i f_i)(\sum_i f_i^k)^k \frac{k-1}{k} (\sum_i f_i^k)
\leq n^{1-1/k} (\sum_i f_i^k)^{1/k} (\sum_i f_i^k)^k \frac{k-1}{k} (\sum_i f_i^k)
= n^{1-1/k} (F_k)^2
\]