Frequency moments and Counting Distinct Elements

Lecture 06
January 31, 2019
Part I

Frequency Moments
Streaming model

- The input consists of \(m \) objects/items/tokens \(e_1, e_2, \ldots, e_m \) that are seen one by one by the algorithm.
- The algorithm has “limited” memory say for \(B \) tokens where \(B < m \) (often \(B \ll m \)) and hence cannot store all the input.
- Want to compute interesting functions over input.

Examples:
- Each token in a number from \([n]\)
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix
Frequency Moment Problem(s)

- A fundamental class of problems

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Example: $n = 5$ and stream is $4, 2, 4, 1, 1, 1, 4, 5$.
Frequency Moment Problem(s)

- A fundamental class of problems

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound)

Example: $n = 5$ and stream is $4, 2, 4, 1, 1, 1, 4, 5$
Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound).

Given a stream let \(f_i \) denote the frequency of \(i \) or number of times \(i \) is seen in the stream.

Consider vector \(f = (f_1, f_2, \ldots, f_n) \).

For \(k \geq 0 \) the \(k \)'th frequency moment \(F_k = \sum_i f_i^k \). We can also consider the \(\ell_k \) norm of \(f \) which is \((F_k)^{1/k} \).

Example: \(n = 5 \) and stream is \(4, 2, 4, 1, 1, 1, 4, 5 \).
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.

For $k \geq 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound)

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector $f = (f_1, f_2, \ldots, f_n)$

For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream
Frequency Moments

- Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound).
- Given a stream let \(f_i \) denote the frequency of \(i \) or number of times \(i \) is seen in the stream. Consider vector \(f = (f_1, f_2, \ldots, f_n) \).
- For \(k \geq 0 \) the \(k \)’th frequency moment \(F_k = \sum_i f_i^k \).

Important cases/regimes:

- \(k = 0 \): \(F_0 \) is simply the number of distinct elements in stream
- \(k = 1 \): \(F_1 \) is the length of stream which is easy
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/ regimes:
- $k = 0$: F_0 is simply the number of distinct elements in stream.
- $k = 1$: F_1 is the length of stream which is easy.
- $k = 2$: F_2 is fundamental in many ways as we will see.
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.

For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream.
- $k = 1$: F_1 is the length of stream which is easy.
- $k = 2$: F_2 is fundamental in many ways as we will see.
- $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob).
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.

For $k \geq 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream.
- $k = 1$: F_1 is the length of stream which is easy.
- $k = 2$: F_2 is fundamental in many ways as we will see.
- $k = \infty$: F_∞ is the maximum frequency (heavy hitters prob).
- $0 < k < 1$ and $1 < k < 2$
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream.
- $k = 1$: F_1 is the length of stream which is easy.
- $k = 2$: F_2 is fundamental in many ways as we will see.
- $k = \infty$: F_∞ is the maximum frequency (heavy hitters prob).
- $0 < k < 1$ and $1 < k < 2$.
- $2 < k < \infty$.
Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?
Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k?
Frequency Moments: Questions

Estimation
Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling
Given a stream and k can we sample an item i in proportion to f_i^k?

Sketching
Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory $\Omega(n)$: store f explicitly. Interesting when memory is $\ll n$. Ideally want to do it with $\log^c n$ memory for some fixed $c \geq 1$ (polylog(n)). Note that $\log n$ is roughly the memory required to store one token/number.
Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms.
Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1 \pm \epsilon)$-approximation or constant factor approximation
- and randomized algorithms
Need for approximation and randomization

For most of the interesting problems \(\Omega(n) \) lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on \((1 \pm \epsilon)\)-approximation or constant factor approximation
- and randomized algorithms
Relative approximation

Let \(g(\sigma) \) be a real-valued non-negative function over streams \(\sigma \).

Definition

Let \(\mathcal{A}(\sigma) \) be the real-valued output of a randomized streaming algorithm on stream \(\sigma \). We say that \(\mathcal{A} \) provides an \((\alpha, \beta)\) relative approximation for a real-valued function \(g \) if for all \(\sigma \):

\[
\Pr \left[\left| \frac{\mathcal{A}(\sigma)}{g(\sigma)} - 1 \right| > \alpha \right] \leq \beta.
\]

Our ideal goal is to obtain a \((\epsilon, \delta)\)-approximation for any given \(\epsilon, \delta \in (0, 1) \).
Additive approximation

Let $g(\sigma)$ be a real-valued function over streams σ. If $g(\sigma)$ can be negative, focus on additive approximation.

Definition

Let $A(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ. We say that A provides an (α, β) additive approximation for a real-valued function g if for all σ:

$$\Pr [|A(\sigma) - g(\sigma)| > \alpha] \leq \beta.$$

When working with additive approximations some normalization/scaling is typically necessary. Our ideal goal is to obtain a (ϵ, δ)-approximation for any given $\epsilon, \delta \in (0, 1)$.

Part II

Estimating Distinct Elements
Distinct Elements

Given a stream \(\sigma \) how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?
Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution?
Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure
Offline Solution

DistinctElements

Initialize dictionary D to be empty

$k ← 0$

While (stream is not empty) do
 Let e be next item in stream
 If ($e ∉ D$) then
 Insert e into D
 $k ← k + 1$
 EndWhile

Output k

Which dictionary data structure?

- Binary search trees: space $O(k)$ and total time $O(m \log k)$.
- Hashing: space $O(k)$ and expected time $O(m)$.

DistinctElements

Initialize dictionary D to be empty

$k \leftarrow 0$

While (stream is not empty) do

Let e be next item in stream

If ($e \not\in D$) then

Insert e into D

$k \leftarrow k + 1$

EndWhile

Output k

Which dictionary data structure?
Offline Solution

DistinctElements

Initialize dictionary \mathcal{D} to be empty

$k \leftarrow 0$

While (stream is not empty) do

Let e be next item in stream

If ($e \not\in \mathcal{D}$) then

Insert e into \mathcal{D}

$k \leftarrow k + 1$

EndWhile

Output k

Which dictionary data structure?

- Binary search trees: space $O(k)$ and total time $O(m \log k)$
- Hashing: space $O(k)$ and expected time $O(m)$.
Hashing based idea

- Use hash function $h : [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is $\min_{e_i} h(e_i)$. Need only $O(\log n)$ bits since numbers are in range $[N]$.
Hashing based idea

- Use hash function \(h : \mathbb{[n]} \rightarrow \mathbb{[N]} \) for some \(N \) polynomial in \(n \).
- Store only the minimum hash value seen. That is \(\min_{e_i} h(e_i) \). Need only \(O(\log n) \) bits since numbers are in range \(\mathbb{[N]} \).

Question: why is this good?

- Assume idealized hash function: \(h : \mathbb{[n]} \rightarrow \mathbb{[0, 1]} \) that is fully random over the real interval.
Hashing based idea

- Use hash function \(h : [n] \rightarrow [N] \) for some \(N \) polynomial in \(n \).
- Store only the minimum hash value seen. That is \(\min_{e_i} h(e_i) \).
 Need only \(O(\log n) \) bits since numbers are in range \([N]\).

Question: why is this good?

- Assume idealized hash function: \(h : [n] \rightarrow [0, 1] \) that is fully random over the real interval
- Suppose there are \(k \) distinct elements in the stream
Hashing based idea

- Use hash function $h : [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is $\min_{e_i} h(e_i)$. Need only $O(\log n)$ bits since numbers are in range $[N]$.

Question: why is this good?

- Assume idealized hash function: $h : [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?
Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}.$
Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y] = \frac{1}{(k+1)}.$$

DistinctElements

Assume ideal hash function $h : [n] \rightarrow [0, 1]$

$y \leftarrow 1$

While (stream is not empty) do

Let e be next item in stream

$y \leftarrow \min(z, h(e))$

EndWhile

Output $\frac{1}{y} - 1$
Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y] = \frac{1}{(k+1)}.$$
Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y] = \frac{1}{k+1}.$$

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y^2] = \frac{1}{(k+1)(k+2)}$$
and

$$\text{Var}(Y) = \frac{k}{(k+1)^2(k+2)} \leq \frac{1}{(k+1)^2}.$$
Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average h parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1 + \epsilon)$-approximation with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1 + \epsilon)$-approximation with probability $(1 - \delta)$
Averaging and reducing variance

1. Run basic estimator independently and in parallel \(h \) times to obtain \(X_1, X_2, \ldots, X_h \)
2. Let \(Z = \frac{1}{h} X_i \)
3. Output \(\frac{1}{Z} - 1 \)
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h

2. Let $Z = \frac{1}{h}X_i$

3. Output $\frac{1}{Z} - 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing $h = \frac{1}{\eta \epsilon^2}$ and using Chebyshev:

$$\Pr\left[\left|Z - \frac{1}{k+1}\right| \geq \epsilon \frac{1}{k+1}\right] \leq \eta.$$

Hence

$$\Pr\left[\left|\left(1-Z\right) - k\right| \geq O(\epsilon)\right] \leq \eta.$$

Repeat $O((\log \frac{1}{\delta})$ times and output median. Error probability $< \delta$.

Chandra (UIUC)
Run basic estimator independently and in parallel \(h \) times to obtain \(X_1, X_2, \ldots, X_h \)

Let \(Z = \frac{1}{h} X_i \)

Output \(\frac{1}{Z} - 1 \)

Claim: \(\mathbb{E}[Z] = \frac{1}{(k+1)} \) and \(\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2} \).

Choosing \(h = \frac{1}{(\eta \epsilon^2)} \) and using Chebyshev:
\[
\Pr\left[\left| Z - \frac{1}{k+1} \right| \geq \frac{\epsilon}{k+1} \right] \leq \eta.
\]
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h
2. Let $Z = \frac{1}{h}X_i$
3. Output $\frac{1}{Z} - 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing $h = \frac{1}{(\eta \epsilon^2)}$ and using Chebyshev:

$$\Pr\left[|Z - \frac{1}{k+1}| \geq \frac{\epsilon}{k+1} \right] \leq \eta.$$

Hence $\Pr\left[|(\frac{1}{Z} - 1) - k| \right] \geq O(\epsilon)k \leq \eta$.
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h
2. Let $Z = \frac{1}{h}X_i$
3. Output $\frac{1}{Z} - 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \leq \frac{1}{h \cdot (k+1)^2}$.

Choosing $h = \frac{1}{(\eta \epsilon^2)}$ and using Chebyshev:
\[\Pr\left[|Z - \frac{1}{k+1}| \geq \frac{\epsilon}{k+1}\right] \leq \eta.\]

Hence $\Pr\left[\|(\frac{1}{Z} - 1) - k\| \geq O(\epsilon)k \right] \leq \eta$.

Repeat $O(\log 1/\delta)$ times and output median. Error probability $< \delta$.

Chandra (UIUC) CS498ABD 18 Spring 2019 18 / 28
Algorithm via regular hashing

Do not have idealized hash function.

- Use $h : [n] \rightarrow [N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $h \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different tradeoffs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success
Algorithm from BJKST

BJKST-DistinctElements:

\[\mathcal{H} \text{ is a } 2\text{-universal hash family from } [n] \text{ to } [N = n^3] \]

choose \(h \) at random from \(\mathcal{H} \)

\[t \leftarrow \frac{c}{\epsilon^2} \]

While (stream is not empty) do

- \(a_i \) is current item

 Update the smallest \(t \) hash values seen so far with \(h(a_i) \)

endWhile

Let \(v \) be the \(t' \)th smallest value seen in the hast values.

Output \(tN/v \).
Algorithm from BJKST

BJKST-DistinctElements:

- \mathcal{H} is a 2-universal hash family from $[n]$ to $[N = n^3]$
- choose h at random from \mathcal{H}
- $t \leftarrow \frac{c}{\epsilon^2}$
- While (stream is not empty) do
 - a_i is current item
 - Update the smallest t hash values seen so far with $h(a_i)$
- endWhile
- Let v be the t’th smallest value seen in the hash values.
- Output tN/v.

- Memory: $t = O(1/\epsilon^2)$ values so $O(\log n/\epsilon^2)$ bits. Also $O(\log n)$ bits to store hash function.
- Processing time per element: $O(\log(1/\epsilon))$ comparisons of $\log n$ bit numbers by using a binary search tree. And computing hash value.
Intuition for algorithm/analysis

If h were truly random we expect minimum hash value to be around $N/(d + 1)$

t’th minimum hash value v to be around $tN/(d + 1)$.

Hence tN/v should be around $d + 1$

We will assume that $d > c\epsilon^2$ for otherwise we can keep track of the exact count of distinct elements. How?

t’th hash value more robust estimator than minimum hash value and incorporates the averaging trick to reduce variance
Analysis

Let d be actual number of distinct values in a given stream (assume $d > c/\epsilon^2$). Let D be the output of the algorithm which is a random variable.

Lemma $\Pr[D < (1 - \epsilon) d] \leq 1/6$.

Lemma $\Pr[D > (1 + \epsilon) d] \leq 1/6$.

Hence $\Pr[|D - d| \geq \epsilon d] < 1/3$. Can do median trick to reduce error probability to δ with $O(\log 1/\delta)$ parallel repetitions.
Let d be actual number of distinct values in a given stream (assume $d > c/\epsilon^2$). Let D be the output of the algorithm which is a random variable.

Lemma

$$\Pr[D < (1 - \epsilon)d] \leq 1/6.$$

Lemma

$$\Pr[D > (1 + \epsilon)d] \leq 1/6.$$

Hence $\Pr[|D - d| \geq \epsilon d] < 1/3$. Can do median trick to reduce error probability to δ with $O(\log 1/\delta)$ parallel repetitions.
Since $N = n^3$ the probability that there are no collisions in h is at least $1 - 1/n$.

Left as an exercise.

Recall

Lemma

$x = x_1 + x_2 + \ldots + x_k$ where x_1, x_2, \ldots, x_k are pairwise independent. Then $\text{Var}(x) = \sum_i \text{Var}(x_i)$.
Analysis

Lemma

\[\Pr[D < (1 - \epsilon)d] \leq 1/6. \]

Let \(b_1, b_2, \ldots, b_d \) be the distinct values in the stream. Recall \(D = tN/v \) where \(v \) is the \(t \)'th smallest hash value seen.

\[D < (1 - \epsilon)d \text{ iff } v > \frac{tN}{(1-\epsilon)d}. \] Implies less than \(t \) hash values fell in the interval \([1..\frac{tN}{(1-\epsilon)d}]\).
Lemma

\[Pr[D < (1 - \epsilon)d] \leq 1/6. \]

Let \(b_1, b_2, \ldots, b_d \) be the distinct values in the stream. Recall \(D = tN/v \) where \(v \) is the \(t \)'th smallest hash value seen.

\(D < (1 - \epsilon)d \) iff \(v > \frac{tN}{(1-\epsilon)d} \). Implies less than \(t \) hash values fell in the interval \([1..\frac{tN}{(1-\epsilon)d}]\). What is the probability of this event?

Let \(X_i \) be indicator for \(h(b_i) \leq \frac{tN}{(1-\epsilon)d} \).

And \(X = \sum_{i=1}^{d} X_i \)

\[Pr[D < (1 - \epsilon)d] = Pr[X < t]. \]
Analysis

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$,
$E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq (1 + \epsilon)\frac{t}{d}$. (ignoring some rounding issues for clarity of calculations)
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq (1 + \epsilon) \frac{t}{d}$.

- $E[X] \geq (1 + \epsilon) t$. (ignoring some rounding issues for clarity of calculations)
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$,
 $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq (1 + \epsilon)t/d$. (ignoring some rounding issues for clarity of calculations)
- $E[X] \geq (1 + \epsilon)t$.
- X_i is a binary rv hence $\text{Var}(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq (1 + \epsilon)t/d$. (ignoring some rounding issues for clarity of calculations)

- $E[X] \geq (1 + \epsilon)t$.

- X_i is a binary rv hence $\text{Var}(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.

- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $\text{Var}(X) = \sum_i \text{Var}(X_i) \leq (1 + 3\epsilon/2)t$.

By Chebyshev:

$$\Pr[X < t] \leq \Pr[|X - E[X]| > \epsilon t] \leq \frac{\text{Var}(X)}{\epsilon^2 t^2} \leq \frac{1 + 3\epsilon/2}{\epsilon^2 t^2}$$

Choose c sufficiently large to ensure ratio is at most $1/6$.

Chandra (UIUC)
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$,
 $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq (1 + \epsilon)t/d$. (ignoring some rounding issues for clarity of calculations)

- $E[X] \geq (1 + \epsilon)t$.

- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.

- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \leq (1 + 3\epsilon/2)t$.

By Chebyshev:

$$\Pr[X < t] \leq \Pr[|X - E[X]| > \epsilon t] \leq \frac{Var(X)}{\epsilon^2 t^2} \leq \frac{(1 + 3\epsilon/2)}{c}$$
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \geq \frac{(1 + \epsilon)t}{d}$. (ignoring some rounding issues for clarity of calculations)
- $E[X] \geq (1 + \epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \leq (1 + 3\epsilon/2)t$.

By Chebyshev:

$$\Pr[X < t] \leq \Pr[|X - E[X]| > \epsilon t] \leq \frac{Var(X)}{\epsilon^2 t^2} \leq \frac{(1 + 3\epsilon/2)/c}{1/6}$$

Choose c sufficiently large to ensure ratio is at most $1/6$.
Lemma

\[\Pr[D > (1 + \epsilon)d] \leq 1/6. \]

Let \(b_1, b_2, \ldots, b_d \) be the distinct values in the stream. Recall \(D = tN/v \) where \(v \) is the \(t \)'th smallest hash value seen.

\(D > (1 + \epsilon)d \) iff \(v < \frac{tN}{(1+\epsilon)d} \). Implies *more than* \(t \) hash values fell in the interval \([1..\frac{tN}{(1+\epsilon)d}]\).
Analysis

Lemma

\[\Pr[D > (1 + \epsilon)d] \leq 1/6]. \]

Let \(b_1, b_2, \ldots, b_d \) be the distinct values in the stream. Recall \(D = tN/v \) where \(v \) is the \(t \)'th smallest hash value seen.

\(D > (1 + \epsilon)d \) iff \(v < \frac{tN}{(1+\epsilon)d} \). Implies more than \(t \) hash values fell in the interval \([1..\frac{tN}{(1+\epsilon)d}]\). What is the probability of this event?

Let \(X_i \) be indicator for \(h(b_i) \leq \frac{tN}{(1+\epsilon)d} \).

And \(X = \sum_{i=1}^{d} X_i \)

\[\Pr[D > (1 + \epsilon)d] = \Pr[Y > t]. \]
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1 - \epsilon/2)t/d$. (ignoring some rounding issues for clarity of calculations)

- $E[X] \leq (1 - \epsilon/2)t$.

X_i is a binary rv hence $\text{Var}(X_i) \leq E[X_i] \leq (1 - \epsilon/2)t/d$.

X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $\text{Var}(X) = \sum_i \text{Var}(X_i) \leq (1 - \epsilon/2)t$.
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1 - \epsilon/2)t/d$. (ignoring some rounding issues for clarity of calculations)
- $E[X] \leq (1 - \epsilon/2)t$.
- X_i is a binary rv hence $\text{Var}(X_i) \leq E[X_i] \leq (1 - \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $\text{Var}(X) = \sum_i \text{Var}(X_i) \leq (1 - \epsilon/2)t$.

By Chebyshev:

$$\Pr[X > t] \leq \Pr[|X - E[X]| > \epsilon t/2] \leq 4\text{Var}(X)/\epsilon^2 t^2 \leq 4(1 - \epsilon/2)/c$$
Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \leq (1 - \epsilon/2) t/d$. (ignoring some rounding issues for clarity of calculations)

- $E[X] \leq (1 - \epsilon/2) t$.

- X_i is a binary rv hence $\text{Var}(X_i) \leq E[X_i] \leq (1 - \epsilon/2) t/d$.

- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $\text{Var}(X) = \sum_i \text{Var}(X_i) \leq (1 - \epsilon/2) t$.

By Chebyshev:

$$\Pr[X > t] \leq \Pr[|X - E[X]| > \epsilon t/2] \leq 4 \text{Var}(X)/\epsilon^2 t^2 \leq 4(1 - \epsilon/2)/c$$

Choose c sufficiently large to ensure ratio is at most $1/6$.

Summary on Distinct Elements

- with $O\left(\frac{1}{\epsilon^2} \log(1/\delta) \log n\right)$ bits algorithm output estimate D such that $|D - d| \leq \epsilon d$ with probability at least $(1 - \delta)$.

- Best known memory bound: $O\left(\frac{\log(1/\delta)}{\epsilon^2} + \log n\right)$ bits and for any fixed δ this meets lower bound within constant factors. Both lower bound and upper bound quite technical — potential reading for projects.

- Continuous monitoring: want estimate to be correct not only at end of stream but also at all intermediate steps. Can be done with $O\left(\frac{\log \log n + \log(1/\delta)}{\epsilon^2} + \log n\right)$ bits.

- *Deletions* allowed! Can also be done. More on this later.