
Homework 4

Algorithms for Big Data
CS498ABD Spring 2019

Due: 10am, Friday, April 19th

Instructions:

• Unlike previous homeworks, you need only do 3 out of the 4 problems. (Of course
you’re encouraged to try and welcome to submit all 4!)

• Each home work can be done in a group of size at most two. Only one home work
needs to be submitted per group. However, we recommend that each of you think
about the problems on your own first.

• Homework needs to be submitted in pdf format on Gradescope. See https://
courses.engr.illinois.edu/cs374/fa2018/hw-policies.html for more detailed
instructions on Gradescope submissions.

• Follow academic integrity policies as laid out in student code. You can consult sources
but cite all of them including discussions with other class mates. Write in your own
words. See the site mentioned in the preceding item for more detailed policies.

Problem 1. Fast JL Recall the JL Lemma where we pick a random m×n matrix Π and
show that for m = O(1/ε2), with at least 2/3 probability,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22. (1)

• Imagine picking Π as follows: for each i ∈ {1, . . . , n} we pick a uniformly random
number hi ∈ {1, . . . ,m}. We then set Πhi,i = ±1 for each i ∈ {1, . . . , n} (the sign is
chosen uniformly at random from {−1, 1}), and all other entries of Π are set to 0. This
Π has the advantage that in turnstile streams, we can process updates in constant time.
Show that using this Π still satisfies the conditions of Equation 1 with 2/3 probability
for m = O(1/ε2).

• Show that the matrix Π from the first part can be specified using O(log n) bits such that
Equation 1 still holds with at least 2/3 probability, and so that given any i ∈ {1, . . . , n},
Πhi,i and hi can both be calculated in constant time. Hint: Use limited independence
hash functions to generate the hi.

1

https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html
https://courses.engr.illinois.edu/cs374/fa2018/hw-policies.html

Exercise 2: Improved net argument for subspace embeddings Recall that in oblivi-
ous subspace embeddings we want to preserve lengths of all vectors in a subspace of dimension
d (assuming vectors are in dimenstion Rn where n > d). For this we showed that a JL matrix
with m = O(d/ε2) rows suffices via a net argument. More formally the claim is that there
is a fixed set Q of exp(O(d)) vectors such that preserving their lengths to a (1 ± ε) factor
suffices to preserve lengths of all vectors in that subspace (we then use a union bound). In
lecture we describe a construction that yielded a net of size exp(d log d) which is weaker. In
this problem you will see the stronger bound via the following two parts.

• Define Qγ = {w : w ∈ γ√
d

Zd, ‖w‖2 ≤ 1} for γ ∈ (0, 1). Prove |Qγ| ≤ ed·f(γ) for some

function f(γ) (which needn’t be optimized).

Hint: Given z ∈ Qγ define a cube Cz centered at z with side length γ/
√
d. Note these

cubes are all disjoint, then use a volume argument (you may use that an `2 ball of
radius r in Rd has volume (Cd · r/

√
d)d for some constant Cd which is Θ(1) as d grows).

• Show that if for some A ∈ Rd×d we have |uTAv| ≤ ε for all u, v ∈ Qγ, then |xTAx| ≤
ε/(1− γ)2 for all x ∈ Rd of unit `2 norm.

Hint: Write y = (1 − γ)x and round down the coordinates of y to obtain z ∈ Qγ.
Argue that y ∈ Cz and use that any point in a convex polytope can be written as a
convex combination of the vertices of that polytope.

• Finish up the details to argue that JL matrix with m = O(d/ε2) rows is yields an
oblivious subspace embedding with constant probability.

Exercise 3: LSH for Hamming Distance In class we saw an LSH scheme for nearest
neighbor search for n binary strings of length d in the hamming distance metric. The scheme
was based on a decision version where for a given r the data structure would be able to answer
with good probability whether there is a point in the data base with distance at most r from q
or whether every point is at least (1+ε)r. The final data structure is composed of O(log d/ε)
data structures for different values of r. Do we need this reduction to the decision version?
Read Charikar’s paper on similarity search for a variant of the basic scheme that avoids this
in a simple way. Describe and analyze the scheme in your own words.

Problem 4. Matchings with additional constraint We saw an algorithm in the semi-
streaming model for finding a constant factor approximation to the maximum cardinality
and maximum weight matching problem. Now consider the following variant. We are given
a graph G = (V,E). Moreover each edge has a color from {1, 2, ..., k} and each color i has
an integer upper bound bi. The goal is to find a maximum cardinality matching M which
satisfies the additional constraint that the number of edges in M from a color class i is at
most bi. Assume that you are given the bi values ahead of time and the each edge when
it arrives in the stream specifies its end points and its color. Describe a constant factor
approximation for this problem in the semi-streaming setting. Extra credit: Develop a
constant factor for the weighted case.

2

