Exercise 1: Balls and bins. Consider the standard balls and bins process. A collection of m identical balls are thrown into n bins. Each ball is thrown independently into a bin chosen uniformly at random.

(a) What is the (precise) probability that a particular bin i contains exactly k balls at the end of the experiment.

(b) Let X be the number of bins that contain exactly k balls. What is the expected value of X?

(c) What is the variance of X?

Exercise 2: Randomized max cut. In the max cut problem, the input is a graph $G = (V, E)$ with $m = |E|$ edges and $n = |V|$ vertices, and the goal is to partition V into two sets (A, B) (where $B = V \setminus A$) maximizing the number of edges $\{e = (u, v) \in E : u \in A, v \in B\}$ with endpoints in different sets. (Such an edge is said to be cut by the partition (A, B)). This problem is known to be NP-Hard, but we will show that it is very easy to get a constant factor approximation.

(a) Consider the following randomized algorithm.

```
random-partition(G = (V, E))

1. A, B ← ∅
2. for each v ∈ V
   A. with probability 1/2
      i. A ← A ∪ {v}
   B. else B ← B ∪ {v}
3. return (A, B)
```

random-partition randomly partitions the vertices by assigning each vertex to A or B independently with equal probability. Show that this algorithm cuts $m/2$ edges in expectation.
(b) Let \(k \in \mathbb{N} \). In the \textbf{max k-cut} problem, we want to partition \(V \) into \(k \) sets \((A_1, \ldots, A_k)\) maximizing the number of edges with endpoints in different parts. Consider the following randomized algorithm.

\[
\text{random-}k\text{-partition}(G = (V, E))
\]

1. \(A_1, \ldots, A_k \leftarrow \emptyset \)

2. for each \(v \in V \)

 // \([k] = \{1, \ldots, k\}\)

 A. sample \(i \in [k] \) uniformly at random

 B. \(A_i \leftarrow A_i \cup \{v\} \)

3. return \((A_1, \ldots, A_k)\)

\text{random-}k\text{-partition} randomly partitions the vertices into \(k \) sets analogously to \text{random-partition}. Show that this algorithm cuts \((1 - 1/k)m\) edges in expectation.

Exercise 3: Coupon Collectors. In the coupon collectors problem, there are \(n \) coupons, and each round we are given one of the coupons uniformly at random. Coupons can repeat. We want to collect all \(n \) coupons, and in particular, we want to analyze the expected number of rounds before collecting all \(n \) coupons.

1. Suppose a coin flips heads with probability \(p \). Show that the expected number of coin tosses until flipping heads is \(1/p \).

2. For \(i \in [n] \), show that the expected number of iterations between collecting the \((i − 1)\)th coupon and the \(i\)th coupon is \(\frac{n}{n + 1 − i} \).

3. Show that the expected number of iterations until collecting all \(n \) coupons is \(nH_n \), where \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \) is the \textbf{n}th \textbf{harmonic number} (and approximately \(\ln(n) \)).