Median in Random Order Streams

Lecture 17
October 22, 2020
Quantiles and Selection

Input: stream of numbers x_1, x_2, \ldots, x_n (or elements from a total order) and integer k

Selection: (Approximate) rank k element in the input.

Quantile summary: A compact data structure that allows approximate selection queries.
Randomized: Pick $\Theta(\frac{1}{\epsilon} \log(1/\delta))$ elements. With probability $(1 - 1/\delta)$ will provide ϵ-approximate quantile summary.

Deterministic: ϵ-approximate quantile summary using $O(\frac{1}{\epsilon} \log^2 n)$ elements and can be improved to $O(\frac{1}{\epsilon} \log n)$ elements.

Exact selection: With $O(n^{1/p} \log n)$ memory and p passes. Median in 2 passes with $O(\sqrt{n} \log n)$ memory.
Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?
Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Two models:

- Elements x_1, x_2, \ldots, x_n chosen iid from some probability distribution. For instance each $x_i \in [0, 1]$
- Elements x_1, x_2, \ldots, x_n chosen adversarially but stream is a uniformly random permutation of elements.
Median in random order streams

[Munro-Paterson 1980]

Theorem

Median in $O(\sqrt{n \log n})$ memory in one pass with high probability if stream is random order.

More generally in p passes with memory $O(n^{1/2p} \log n)$
Munro-Paterson algorithm

- Given a space parameter s, the algorithm stores a set of s consecutive elements seen so far in the stream.
- Maintains counters ℓ and h.
 - ℓ is the number of elements seen so far that are less than $\min S$.
 - h is the number of elements seen so far that are more than $\max S$.
- Tries to keep ℓ and h balanced.

\[a_1, a_2, \ldots, a_i, a_{i+1}, \ldots, a_n \]
\[|S| = s \]
Munro-Paterson algorithm

MP-Median (s):

Store the first s elements of the stream in S

$l = h = 0$

While (stream is not empty) do

- x is new element

 If ($x > \max S$) then $h = h + 1$

 Else If ($x < \min S$) then $l = l + 1$

 Else

 Insert x into S

 If $h > l$ discard $\min S$ from S and $l = l + 1$

 Else discard $\max S$ from S and $h = h + 1$

endWhile

If $1 \leq n/2 - l \leq s$ then

- Output $n/2 - l$ ranked element from S

Else output FAIL

\[\{3, 10, 12\} \]
Example

\[\sigma = 1, 2, 3, 4, 5, 6, 7, 9, 10 \text{ and } s = 3 \]
\[\sigma = 10, 19, 1, 23, 15, 11, 14, 16, 3, 7 \text{ and } s = 3. \]
Analysis

Theorem

If $s = \Omega(\sqrt{n \log n})$ and stream is random order then algorithm outputs median with high probability.
Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $\frac{1}{2}$ and move right with probability $\frac{1}{2}$.
- After n steps how far from the origin?

\begin{align*}
\mathbb{E}[X_n] &= 0 \\
\mathbb{E}[\sum |X_n|] &= O(\sqrt{n})
\end{align*}
Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After \(n \) steps how far from the origin?

At time \(i \) let \(X_i \) be \(-1\) if move to left and \(1\) if move to right.

\(Y_n \) position at time \(n \)

\[
Y_n = \sum_{i=1}^{n} X_i
\]

\(E[Y_n] = 0 \) and \(Var(Y_n) = \sum_{i=1}^{n} Var(X_i) = n \)

By Chebyshev: \(\Pr[|Y_n| \geq t\sqrt{n}] \leq 1/t^2 \)

By Chernoff:

\[
\Pr[|Y_n| \geq t\sqrt{n}] \leq 2 \exp(-t^2/2).
\]
Analysis

Let H_i and L_i be random variables for the values of h and l after seeing i items in the random stream.

Let $D_i = H_i - L_i$

Algorithm fails only if $|D_n| > s$
Analysis

Let H_i and L_i be random variables for the values of h and ℓ after seeing i items in the random stream.

Let $D_i = H_i - L_i$.

Observation: Algorithm fails only if $|D_n| \geq s - 1$.

\[\begin{align*}
\text{Diagram with equations and variables.}
\end{align*} \]
Let H_i and L_i be random variables for the values of h and l after seeing i items in the random stream.

Let $D_i = H_i - L_i$.

Observation: Algorithm fails only if $|D_n| \geq s - 1$.

Will instead analyse the probability that $|D_i| \geq s - 1$ at any i.
Analysis

Lemma

Suppose $D_i = H_i - L_i \geq 0$ and $D_i < s - 1$.

$$\Pr[D_{i+1} = D_i + 1] = \frac{H_i}{H_i + s + L_i} \leq \frac{1}{2}.$$
Lemma

Suppose $D_i = H_i - L_i \geq 0$ and $D_i < s - 1$.

$\Pr[D_{i+1} = D_i + 1] = \frac{H_i}{(H_i + s + L_i)} \leq \frac{1}{2}$.

Lemma

Suppose $D_i = H_i - L_i < 0$ and $|D_i| < s - 1$.

$\Pr[D_{i+1} = D_i - 1] = \frac{L_i}{(H_i + s + L_i)} \leq \frac{1}{2}$.

$s = \sqrt{n \ln n}$
Analysis

Lemma
Suppose $D_i = H_i - L_i \geq 0$ and $D_i < s - 1$.
$\Pr[D_{i+1} = D_i + 1] = H_i/(H_i + s + L_i) \leq 1/2.$

Lemma
Suppose $D_i = H_i - L_i < 0$ and $|D_i| < s - 1$.
$\Pr[D_{i+1} = D_i - 1] = L_i/(H_i + s + L_i) \leq 1/2.$

Thus, process behaves better than random walk on the line (formal proof is technical) and with high probability $|D_i| \leq c\sqrt{n \log n}$ for all i. Thus if $s > c\sqrt{n \log n}$ then algorithm succeeds with high probability.
Other results on selection in random order streams

[Munro-Paterson] extend analysis for $p = 1$ and show that $\Theta(n^{1/2p} \log n)$ memory sufficient for p passes (with high probability). Note that for adversarial stream one needs $\Theta(n^{1/p})$ memory.

[Guha-MacGregor] show that $O(\log \log n)$-passes sufficient for exact selection in random order streams with $\text{polylog}(n)$ memory.
Part I

Secretary Problem
Secretary Problem

- Stream of numbers x_1, x_2, \ldots, x_n (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- **Online setting:** have to make a single irrevocable decision when number seen.
Secretary Problem

- Stream of numbers x_1, x_2, \ldots, x_n (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- **Online setting:** have to make a single irrevocable decision when number seen.

Extensively studied with applications to auction design etc.
Secretary Problem

- Stream of numbers x_1, x_2, \ldots, x_n (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- **Online setting:** have to make a single irrevocable decision when number seen.

Extensively studied with applications to auction design etc.

In the worst case no guarantees possible. What about random arrival order?
Algorithm

Assume \(n \) is known.

LearnAndPick \((\theta)\):
- Let \(y \) be max number seen in the first \(\theta n \) numbers
- Pick \(z \) the first number larger than \(y \) in the remaining stream

Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let \(a \) be largest and \(b \) the second largest. Algorithm will pick \(a \) if \(b \) is in the first \(\theta n \) numbers and \(a \) is the residual stream.

If \(\theta = 1 / 2 \) then each will occur with probability roughly \(1 / 2 \) and hence \(1 / 4 \) probability.

Optimal strategy: \(\theta = 1 / e \) and probability of picking largest number is \(1 / e \). Am I correct in calculation.
Algorithm

Assume n is known.

LearnAndPick (θ):
- Let y be max number seen in the first θn numbers
- Pick z the first number larger than y in the remaining stream

Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?
Algorithm

Assume n is known.

\textbf{LearnAndPick (θ)}:
- Let y be max number seen in the first θn numbers.
- Pick z the first number larger than y in the remaining stream.

\textbf{Question}: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

\textbf{Observation}: Let a be largest and b the second largest. Algorithm will pick a if b is in the first θn numbers and a is the residual stream.
Algorithm

Assume \(n \) is known.

LearnAndPick (\(\theta \)):
Let \(y \) be max number seen in the first \(\theta n \) numbers
Pick \(z \) the first number larger than \(y \) in the remaining stream

Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let \(a \) be largest and \(b \) the second largest. Algorithm will pick \(a \) if \(b \) is in the first \(\theta n \) numbers and \(a \) is the residual stream.

If \(\theta = 1/2 \) then each will occur with probability roughly \(1/2 \) and hence \(1/4 \) probability.
Algorithm

Assume n is known.

LearnAndPick (θ):

- Let y be max number seen in the first θn numbers
- Pick z the first number larger than y in the remaining stream

Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let a be largest and b the second largest. Algorithm will pick a if b is in the first θn numbers and a is the residual stream.

If $\theta = 1/2$ then each will occur with probability roughly $1/2$ and hence $1/4$ probability.

Optimal strategy: $\theta = 1/e$ and probability of picking largest number is $1/e$. A more careful calculation.