JL Lemma, Dimensionality Reduction, and Subspace Embeddings

Lecture 11
September 29, 2020
AMS-ℓ_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variables that are 4-wise independent.

\[z \leftarrow 0 \]

While (stream is not empty) do

\[a_j = (i_j, \Delta_j) \text{ is current update} \]

\[z \leftarrow z + \Delta_j Y_{i_j} \]

endWhile

Output z^2

Claim: Output estimates $\|x\|_2^2$ where x is the vector at end of stream of updates.
Analysis

\[Z = \sum_{i=1}^{n} x_i Y_i \] and output is \(Z^2 \)

\[Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j \]

and hence

\[\mathbb{E}[Z^2] = \sum_i x_i^2 = \|x\|_2^2. \]

One can show that \(\text{Var}(Z^2) \leq 2(\mathbb{E}[Z^2])^2. \)
Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

AMS-ℓ_2-Sketch:

\[k = c \log\left(\frac{1}{\delta}\right)/\epsilon^2 \]

Let M be a $\ell \times n$ matrix with entries in $\{-1, 1\}$ s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

z is a $\ell \times 1$ vector initialized to 0

While (stream is not empty) do

\[a_j = (i_j, \Delta_j) \text{ is current update} \]

\[z \leftarrow z + \Delta_j M_i j \]

endWhile

Output vector z as sketch.

M is compactly represented via k hash functions, one per row, independently chosen from 4-wise independent hash family.
Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map $z = Mx$ has the following features

- $E[z_i] = 0$ and $E[z_i^2] = \|x\|_2^2$ for each $1 \leq i \leq k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2} \log(1/\delta))$ one can obtain an $(1 \pm \epsilon)$ estimate of $\|x\|_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $\|x\|_2$ accurately.
Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map $z = Mx$ has the following features

- $E[z_i] = 0$ and $E[z_i^2] = \|x\|^2_2$ for each $1 \leq i \leq k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2 \log(1/\delta)})$ one can obtain an $(1 \pm \epsilon)$ estimate of $\|x\|^2_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $\|x\|^2_2$ accurately

Question: Do we need median trick? Will averaging do?
Lemma (Distributional JL Lemma)

Fix vector $\mathbf{x} \in \mathbb{R}^d$ and let $\mathbf{\Pi} \in \mathbb{R}^{k \times d}$ matrix where each entry $\mathbf{\Pi}_{ij}$ is chosen independently according to standard normal distribution $\mathcal{N}(0, 1)$ distribution. If $k = \Omega\left(\frac{1}{\epsilon^2} \log(1/\delta)\right)$, then with probability $(1 - \delta)$

$$\left\| \frac{1}{\sqrt{k}} \mathbf{\Pi} \mathbf{x} \right\|_2 = (1 \pm \epsilon) \left\| \mathbf{x} \right\|_2.$$

Can choose entries from $\{-1, 1\}$ as well.

Note: unlike ℓ_2 estimation, entries of $\mathbf{\Pi}$ are independent.

Letting $\mathbf{z} = \frac{1}{\sqrt{k}} \mathbf{\Pi} \mathbf{x}$ we have projected \mathbf{x} from d dimensions to $k = O\left(\frac{1}{\epsilon^2} \log(1/\delta)\right)$ dimensions while preserving length to within $(1 \pm \epsilon)$-factor.
Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d. For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \rightarrow \mathbb{R}^k$ where $k \leq 8 \ln n/\epsilon^2$ such that for all $1 \leq i < j \leq n$,

$$(1 - \epsilon) ||v_i - v_j||_2 \leq ||f(v_i) - f(v_j)||_2 \leq ||v_i - v_j||_2.$$

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π: $f(v) = \Pi v$.

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d. For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \rightarrow \mathbb{R}^k$ where $k \leq 8 \ln n/\epsilon^2$ such that for all $1 \leq i < j \leq n$,

$$(1 - \epsilon)\|v_i - v_j\|_2 \leq \|f(v_i) - f(v_j)\|_2 \leq \|v_i - v_j\|_2.$$

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π: $f(v) = \Pi v$.

Proof.

Apply DJL with $\delta = 1/n^2$ and apply union bound to $\binom{n}{2}$ vectors $(v_i - v_j)$, $i \neq j$.

Normal Distribution

Density function: \(f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)

Standard normal: \(\mathcal{N}(0, 1) \) is when \(\mu = 0, \sigma = 1 \)
Normal Distribution

Cumulative density function for standard normal:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{t} e^{-t^2/2} \text{ (no closed form)}$$
Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Sum of independent Normally distributed variables
Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0, 1)$ and $Y \sim \mathcal{N}(0, 1)$. Let $Z = aX + bY$. Then $Z \sim \mathcal{N}(0, a^2 + b^2)$.

Normal distribution is a stable distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in parameter estimation for $p \in (0, 2)$.
Lemma

Let \(X \) and \(Y \) be independent random variables. Suppose
\(X \sim \mathcal{N}(\mu_X, \sigma_X^2) \) and \(Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2) \). Let \(Z = X + Y \). Then
\(Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2) \).

Corollary

Let \(X \) and \(Y \) be independent random variables. Suppose
\(X \sim \mathcal{N}(0, 1) \) and \(Y \sim \mathcal{N}(0, 1) \). Let \(Z = aX + bY \). Then
\(Z \sim \mathcal{N}(0, a^2 + b^2) \).

Normal distribution is a *stable* distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in \(F_p \) estimation for \(p \in (0, 2) \).
Concentration of sum of squares of normally distributed variables

$\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

$Y = \sum_{i=1}^{k} Z_i$ where each $Z_i \sim \mathcal{N}(0, 1)$.
Concentration of sum of squares of normally distributed variables

$\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

$Y = \sum_{i=1}^{k} Z_i$ where each $Z_i \sim \mathcal{N}(0, 1)$.

Concentration of sum of squares of normally distributed variables

$\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

$Y = \sum_{i=1}^{k} Z_i$ where each $Z_i \sim \mathcal{N}(0, 1)$.

$\mathbb{E}[Z_i^2] = 1$ hence $\mathbb{E}[Y] = k$.

Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0, 1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0, 1/2)$, there is a constant c such that,

$$\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{ce^2k}.$$
χ^2 distribution

Density function

χ^2_k
χ^2 distribution

Cumulative density function

$F_k(x)$

x

$k=1$

$k=2$

$k=3$

$k=4$

$k=6$

$k=9$
Concentration of sum of squares of normally distributed variables

$\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0, 1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0, 1/2)$, there is a constant c such that, $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{c\epsilon^2 k}$.

Recall Chernoff-Hoeffding bound for bounded independent non-negative random variables. Z_i^2 is not bounded, however Chernoff-Hoeffding bounds extend to sums of random variables with exponentially decaying tails.
Proof of DJL Lemma

Without loss of generality assume \(\|x\|_2 = 1 \) (unit vector)

\[
Z_i = \sum_{j=1}^{n} \Pi_{ij} x_i
\]

- \(Z_i \sim \mathcal{N}(0, 1) \)
Proof of DJL Lemma

Without loss of generality assume $\|x\|_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^{n} \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0, 1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y’s distribution is χ^2 since Z_1, \ldots, Z_k are iid.
Proof of DJL Lemma

Without loss of generality assume $\|x\|_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^{n} \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0, 1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y's distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{c\epsilon^2 k}$
Proof of DJL Lemma

Without loss of generality assume $\|x\|_2 = 1$ (unit vector)

\[Z_i = \sum_{j=1}^{n} \prod_{ij} x_i \]

- $Z_i \sim \mathcal{N}(0, 1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y’s distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have
 \[\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - \delta \]
Proof of DJL Lemma

Without loss of generality assume $\|x\|_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^{n} \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0, 1)$
- Let $Y = \sum_{i=1}^{k} Z_i^2$. Y’s distribution is χ^2 since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - 2e^{c\epsilon^2 k}$
- Since $k = \Omega(\frac{1}{\epsilon^2 \log(1/\delta)})$ we have $\Pr[(1 - \epsilon)^2 k \leq Y \leq (1 + \epsilon)^2 k] \geq 1 - \delta$
- Therefore $\|z\|_2 = \sqrt{Y/k}$ has the property that with probability $(1 - \delta)$, $\|z\|_2 = (1 \pm \epsilon)\|x\|_2$.
Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse
Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:
- Choose Π_{ij} to be $\{-1, 0, 1\}$ with probability $1/6, 1/3, 1/6$. Also works. Roughly $1/3$ entries are 0.
- Fast JL: Choose Π in a dependent way to ensure Πx can be computed in $O(d \log d + k^2)$ time. For dense x.
- Sparse JL: Choose Π such that each column is s-sparse. The best known is $s = O(\frac{1}{\epsilon} \log(1/\delta))$. Helps in sparse x.
Part I

(Oblivious) Subspace Embeddings
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

Not possible if $k < \ell$. Why?

Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0.

Possible if $k = \ell$. Why?

Pick Π to be an orthonormal basis for E.

Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections.
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why?
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0.

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 25
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0.
- Possible if $k = \ell$. Why?

Chandra (UIUC)
CS498ABD
19
Fall 2020
19 / 25
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0.
- Possible if $k = \ell$. Why? Pick Π to be an orthonormal basis for E.

Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections.
Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^d of dimension ℓ. Can we find a projection $\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if $k < \ell$. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0.
- Possible if $k = \ell$. Why? Pick Π to be an orthonormal basis for E. **Disadvantage**: This requires knowing E and computing orthonormal basis which is slow.
Subspace Embedding

Question: Suppose we have linear subspace \(E \) of \(\mathbb{R}^d \) of dimension \(\ell \). Can we find a projection \(\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^k \) such that for every \(x \in E \), \(\| \Pi x \|_2 = (1 \pm \epsilon) \| x \|_2 \)?

- Not possible if \(k < \ell \). Why? \(\Pi \) maps \(E \) to a lower dimension. Implies some non-zero vector \(x \in E \) mapped to \(0 \)
- Possible if \(k = \ell \). Why? Pick \(\Pi \) to be an orthonormal basis for \(E \). **Disadvantage:** This requires knowing \(E \) and computing orthonormal basis which is slow.

What we really want: *Oblivious* subspace embedding ala JL based on random projections
Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times n}$ with $k = O\left(\frac{d}{\epsilon^2} \log(1/\delta)\right)$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \epsilon) \|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.
Proof Idea

How do we prove that Π works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the “net argument”

- Choose a large but finite set of vectors T carefully (the net)
- Prove that Π preserves lengths of vectors in T (via naive union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T and hence Π also preserves length of x
Net argument

Sufficient to focus on unit vectors in E. Why?
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.
Net argument

Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.
Net argument

Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Assuming claim: use DJL with $k = O\left(\frac{d}{\epsilon^2} \log(1/\delta)\right)$ and union bound to show that all vectors in T are preserved in length up to $(1 \pm \epsilon)$ factor.
Net argument

Sufficient to focus on unit vectors in E.

Also assume wlog and ease of notation that E is the subspace formed by the first d coordinates in standard basis.

A weaker net:

- Consider the box $[-1, 1]^d$ and make a grid with side length ϵ/d
- Number of grid vertices is $(2d/\epsilon)^d$
- Sufficient to take T to be the grid vertices
- Gives a weaker bound of $O(\frac{1}{\epsilon^2} d \log(d/\epsilon))$ dimensions
- A more careful net argument gives tight bound
Fix any \(x \in E \) such that \(\|x\|_2 = 1 \) (unit vector).

There is grid point \(y \) such that \(\|y\|_2 \leq 1 \) and \(x \) is close to \(y \).

Let \(z = x - y \). We have \(|z_i| \leq \epsilon/d \) for \(1 \leq i \leq i \leq d \) and \(z_i = 0 \) for \(i > d \).
Net argument: analysis

Fix any $x \in E$ such that $\|x\|_2 = 1$ (unit vector)
There is grid point y such that $\|y\|_2 \leq 1$ and x is close to y
Let $z = x - y$. We have $|z_i| \leq \epsilon/d$ for $1 \leq i \leq d$ and $z_i = 0$ for $i > d$

\[
\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|
\]
\[
\leq (1 + \epsilon) + (1 + \epsilon) \sum_{i=1}^{d} |z_i|
\]
\[
\leq (1 + \epsilon) + \epsilon(1 + \epsilon) \leq 1 + 3\epsilon
\]
Net argument: analysis

Fix any $x \in E$ such that $\|x\|_2 = 1$ (unit vector)

There is grid point y such that $\|y\|_2 \leq 1$ and x is close to y

Let $z = x - y$. We have $|z_i| \leq \epsilon/d$ for $1 \leq i \leq d$ and $z_i = 0$ for $i > d$

$$\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|$$

$$\leq (1 + \epsilon) + (1 + \epsilon) \sum_{i=1}^{d} |z_i|$$

$$\leq (1 + \epsilon) + \epsilon(1 + \epsilon) \leq 1 + 3\epsilon$$

Similarly $\|\Pi x\| \geq 1 - O(\epsilon)$.
Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix A with n data columns (say in large dimension \mathbb{R}^h) with small effective rank d. Want to reduce to a matrix of size roughly $\mathbb{R}^{d \times d}$ by spending time proportional to $\text{nnz}(A)$.

Later in course.