CountMin and Count Sketches

Lecture 09
September 22, 2020
Heavy Hitters Problem

Heavy Hitters Problem: Find all items i such that $f_i > m/k$ for some fixed k.

Heavy hitters are very frequent items.

We saw Misra-Gries deterministic algorithm that in $O(k)$ space finds the heavy hitters assuming they exist.

- Identifies correct heavy hitters if they exist but can make a mistake if they don’t and need second pass to verify
- Cannot handle deletions
(Strict) Turnstile Model

- Turnstile model: each update is \((i_j, \Delta_j)\) where \(\Delta_j\) can be positive or negative.
- Strict turnstile: need \(x_i \geq 0\) at all time for all \(i\).

In terms of frequent items we want additive error to \(x_i\):

\[
\bar{x} = (0, 0, 0, \ldots, 0)
\]

\[
\begin{array}{c}
1 \\
2 \\
\vdots \\
\epsilon + 5 \\
-10
\end{array}
\]
Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters
- Suppose we pick $h : [n] \rightarrow [ck]$ for some $c > 1$
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins)
- In ideal situation each bucket can be used to count a separate heavy hitter
- Use multiple independent hash functions to improve estimate
Part I

CountMin Sketch
CountMin Sketch: Offline view

- \(d\) independent hash functions \(h_1, h_2, \ldots, h_d\). Each hash function is pair-wise independent.
- Each \(h_{\ell}: [n] \rightarrow [w]\) (hence maps to \(w\) buckets).
- Store one number per bucket and hence total of \(dw\) numbers which can be viewed as 2-day array (\(d\) rows, \(w\) columns).
 \(C[\ell, s]\) is the counter for bucket \(s\) for hash function \(h_{\ell}\).
- Let \(x \in \mathbb{R}^n\) be the given vector. For \(1 \leq \ell \leq d, 1 \leq s \leq w\)

\[
C[\ell, s] = \sum_{i: h_\ell(i) = s} x_i
\]

hence it keeps track of sum of all coordinates that \(h_\ell\) maps to bucket \(s\)
$c[l, s] = \sum_{i: h_l(i) = s} x_i$
CountMin Sketch

[Cormode-Muthukrishnan]

CountMin-Sketch\((w, d)\):

\(h_1, h_2, \ldots, h_d\) are pair-wise independent hash functions from \([n] \rightarrow [w]\).

While (stream is not empty) do

\(e_t = (i_t, \Delta_t)\) is current item

for \(\ell = 1\) to \(d\) do

\(C[\ell, h_\ell(i_t)] \leftarrow C[\ell, h_\ell(i_t)] + \Delta_t\)

endWhile

For \(i \in [n]\) set \(\hat{x}_i = \min_{\ell=1}^d C[\ell, h_\ell(i)]\).

Counter \(C[\ell, j]\) counts the sum of all \(x_i\) such that \(h_\ell(i) = s\).

\[
C[\ell, s] = \sum_{i: h_\ell(i) = s} x_i.
\]
Intuition

- Suppose there are k heavy hitters b_1, b_2, \ldots, b_k
- Consider b_i: Hash function h_ℓ sends b_i to $h_\ell(b_i)$. $C[\ell, h(b_i)]$ counts x_{b_i} and also other items that hash to same bucket $h(b_i)$ so we always overcount (since strict turnstile model)
- Repeating with many hash functions and taking minimum is right thing to do: for b_i the goal is to avoid other heavy hitters colliding with it
Lemma

Consider strict turnstile mode \((x \geq 0)\). Let \(d = \Omega(\log \frac{1}{\delta})\) and \(w > \frac{2}{\epsilon}\). Then for any fixed \(i \in [n]\), \(x_i \leq \tilde{x}_i\) and

\[
\Pr[\tilde{x}_i \geq x_i + \epsilon \|x\|_1] \leq \delta.
\]
Lemma

Consider strict turnstile mode \((x \geq 0)\). Let \(d = \Omega(\log \frac{1}{\delta})\) and \(w > \frac{2}{\epsilon}\). Then for any fixed \(i \in [n]\), \(x_i \leq \tilde{x}_i\) and

\[
\Pr[\tilde{x}_i \geq x_i + \epsilon \|x\|_1] \leq \delta.
\]

- Unlike Misra-Greis we have over estimates
- Actual items are not stored (requires work to recover heavy hitters)
- Works in strict turnstile model and hence can handle deletions
- Space usage is \(O\left(\frac{\log(1/\delta)}{\epsilon}\right)\) counters and hence \(O\left(\frac{\log(1/\delta)}{\epsilon} \log m\right)\) bits
Fix ℓ and $i \in [n]$: $h_\ell(i)$ is the bucket that h_ℓ hashes i to.

$$Z_\ell = C[l, s]$$

$$E[Z_\ell] = x_i + \sum_{i' \neq i} \Pr[h_\ell(i') = h_\ell(i)] x_{i'} = x_i + \frac{1}{\omega} \sum_{i' \neq i} x_{i'} \leq x_i + \frac{1}{\omega} \|x\|_1 - \frac{1}{\omega} x_i$$
Analysis

Fix ℓ and $i \in [n]$: $h_\ell(i)$ is the bucket that h_ℓ hashes i to.

$Z_\ell = C[\ell, h_\ell(i)]$ is the counter value that i is hashed to.
Analysis

Fix ℓ and $i \in [n]$: $h_\ell(i)$ is the bucket that h_ℓ hashes i to.

$Z_\ell = C[\ell, h_\ell(i)]$ is the counter value that i is hashed to.

$E[Z_\ell] = x_i + \sum_{i' \neq i} \Pr[h_\ell(i') = h_\ell(i)]x_{i'}$
Analysis

Fix ℓ and $i \in [n]: h_\ell(i)$ is the bucket that h_ℓ hashes i to.

$Z_\ell = C[\ell, h_\ell(i)]$ is the counter value that i is hashed to.

$E[Z_\ell] = x_i + \sum_{i' \neq i} \Pr[h_\ell(i') = h_\ell(i)]x_{i'}$

By pairwise-independence

$E[Z_\ell] = x_i + \sum_{i' \neq i} x_{i'}/w \leq x_i + \epsilon \|x\|_1/2$

$w = \frac{2}{s}$
Analysis

Fix ℓ and $i \in [n]$: $h_\ell(i)$ is the bucket that h_ℓ hashes i to.

$Z_\ell = C[\ell, h_\ell(i)]$ is the counter value that i is hashed to.

$$E[Z_\ell] = x_i + \sum_{i' \neq i} \Pr[h_\ell(i') = h_\ell(i)]x_{i'}$$

By pairwise-independence

$$E[Z_\ell] = x_i + \sum_{i' \neq i} x_{i'}/w \leq x_i + \frac{\epsilon \|x\|_1}{2}$$

Via Markov applied to $Z_\ell - x_i$ (we use strict turnstile here)

$$\Pr[Z_\ell - x_i] \geq \epsilon \|x\|_1 \leq \frac{1}{2}$$
Analysis

Fix \(\ell \) and \(i \in [n] \): \(h_\ell(i) \) is the bucket that \(h_\ell \) hashes \(i \) to.

\[Z_\ell = C[\ell, h_\ell(i)] \] is the counter value that \(i \) is hashed to.

\[E[Z_\ell] = x_i + \sum_{i' \neq i} \Pr[h_\ell(i') = h_\ell(i)]x_{i'} \]

By pairwise-independence

\[E[Z_\ell] = x_i + \sum_{i' \neq i} x_{i'}/w \leq x_i + \epsilon \|x\|_1/2 \]

Via Markov applied to \(Z_\ell - x_i \) (we use strict turnstile here)

\[\Pr[Z_\ell - x_i] \geq \epsilon \|x\|_1 \leq 1/2 \]

Since the \(d \) hash functions are independent

\[\Pr[\min_\ell Z_\ell \geq x_i + \epsilon \|x\|_1] \leq 1/2^d \leq \delta \]
Summarizing

Lemma

Let $d > \left(\log \frac{1}{\delta}\right)$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon\|x\|_1] \leq \delta.$$

Choose $d = 2 \ln n$ and $w = 2/\epsilon$. Then

$$\Pr[\tilde{x}_i \geq x_i + \epsilon\|x\|_1] \leq 1/n^2$$

Via union bound, with probability $(1 - 1/n)$, for all $i \in [n]$:

$$\tilde{x}_i \leq x_i + \epsilon\|x\|_1$$
Lemma

Let \(d = \Omega(\log \frac{1}{\delta}) \) and \(w > \frac{2}{\epsilon} \). Then for any fixed \(i \in [n] \), \(x_i \leq \tilde{x}_i \) and

\[
\Pr[\tilde{x}_i \geq x_i + \epsilon \|x\|_1] \leq \delta.
\]

Corollary

With \(d = \Omega(\ln n) \) and \(w = \frac{2}{\epsilon} \), with probability \((1 - \frac{1}{n}) \) for all \(i \in [n] \):

\[
\tilde{x}_i \leq x_i + \epsilon \|x\|_1
\]

Total space: \(O\left(\frac{1}{\epsilon} \log n \right) \) counters and hence \(O\left(\frac{1}{\epsilon} \log n \log m \right) \) bits.
Question: Why is CountMin a linear sketch?

\[C[l,s] = \sum_{i: h(i) = s} x_i = \langle u, x \rangle \]

\[u_i = 1 \quad \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \]

\[h_L(i) = \phi \leq s \]
CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

Recall that for $1 \leq \ell \leq d$ and $1 \leq s \leq w$:

$$C[\ell, s] = \sum_{i: h_\ell(i) = s} x_i$$

Thus, once hash function h_ℓ is fixed:

$$C[\ell, s] = \langle u, x \rangle$$

where u is a row vector in $\{0, 1\}^n$ such that $u_i = 1$ if $h_\ell(i) = s$ and $u_i = 0$ otherwise.

Thus, once hash functions are fixed, the counter values can be written as Mx where $M \in \{0, 1\}^{wd \times n}$ is the sketch matrix.
Part II

Count Sketch
Count Sketch

- Similar to CountMin use d hash functions each with w buckets each and hence array of dw counters.
- Inspired by F_2 estimation use additional $\{-1, 1\}$ hash functions which creates negative values.
- Use median estimate.

\[
C[l,s] = -1 \times l_{160} + x_5 - x_{26}
\]
Count Sketch

[Charikar-Chen-FarachColton]

Count-Sketch (w, d):

- h_1, h_2, \ldots, h_d are pair-wise independent hash functions from $[n] \rightarrow [w]$.
- g_1, g_2, \ldots, g_d are pair-wise independent hash functions from $[n] \rightarrow \{-1, 1\}$.

While (stream is not empty) do

1. $e_t = (i_t, \Delta_t)$ is current item
2. for $\ell = 1$ to d do
 - $C[\ell, h_\ell(i_t)] \leftarrow C[\ell, h_\ell(i_t)] + g(i_t)\Delta_t$
3. endWhile

For $i \in [n]$ set $\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[\ell, h_\ell(i)]\}$.

Like CountMin, Count sketch has wd counters. Now counter values can become negative even if x is positive.
Intuition

- Each hash function h_ℓ spreads the elements across w buckets.
- The has function g_ℓ induces cancellations (inspired by F_2 estimation algorithm).
- Since answer may be negative even if $x \geq 0$, we take the median.

Exercise: Show that Count sketch is also a linear sketch.
Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $E[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \geq \epsilon \|x\|_2] \leq \delta.$$
Property of Count Sketch

Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $E[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \geq \epsilon \|x\|_2] \leq \delta.$$

Comparison to CountMin

- Error guarantee is with respect to $\|x\|_2$ instead of $\|x\|_1$. For $x \geq 0$, $\|x\|_2 \leq \|x\|_1$ and in some cases $\|x\|_2 \ll \|x\|_1$.
- Space increases to $O\left(\frac{1}{\epsilon^2} \log n\right)$ counters from $O\left(\frac{1}{\epsilon} \log n\right)$ counters.

$$\tilde{x}_i \leq x_i + \frac{\epsilon}{3} \|x\|_1$$

$$\|x\|_2 \leq \frac{\epsilon}{3} \cdot \|x\|_1$$
Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_\ell = g_\ell(i) C[\ell, h_\ell(i)]$.

\[Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] = \begin{cases} 1 & \text{if } h_\ell(i) = h_\ell(j) \text{ for some } j \in [d] \\ 0 & \text{otherwise} \end{cases} \]

\[C[\ell, s] = \sum_{j : h_\ell(j) = s} g_\ell(j) x_j \]

\[g_\ell(i) C[\ell, s] = g_\ell(i)^2 x_i + \sum_{j \neq i, h_\ell(i) = s} g_\ell(i) g_\ell(i') x_i \]

\[E[Y_i] = E[Y_{i0}] = 1/w \text{ from pairwise independence of } g_\ell \text{ and } Y_{i0} \text{ is independent of } g_\ell(i) \text{ and } g_\ell(i_0) \text{ for } i_0 \neq i. \]
Analysis

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_\ell(i) = h_\ell(i')$; that is i and i' collide in h_ℓ.

$E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_ℓ.

\square
Analysis

Fix an $i \in [n]$ and $\ell \in [d]$. Let $Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_\ell(i) = h_\ell(i')$; that is i and i' collide in h_ℓ. $E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_ℓ.

Therefore, $Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] = g_\ell(i) \sum_{i' = 1}^{\cup} g_\ell(i') x_{i'} Y_{i'}$.
Fix an \(i \in [n] \) and \(\ell \in [d] \). Let \(Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] \).

For \(i' \in [n] \) let \(Y_{i'} \) be the indicator random variable that is 1 if \(h_\ell(i) = h_\ell(i') \); that is \(i \) and \(i' \) collide in \(h_\ell \).

\[
E[Y_{i'}] = E[Y_{i'}^2] = 1/w \quad \text{from pairwise independence of } h_\ell.
\]

\[
Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] = g_\ell(i) \sum_{i'} g_\ell(i') x_{i'} Y_{i'}
\]

Therefore,

\[
E[Z_\ell] = x_i + \sum_{i' \neq i} E[g_\ell(i)g_\ell(i') Y_{i'}]x_{i'} = x_i
\]

because \(E[g_\ell(i)g_\ell(i')] = 0 \) for \(i \neq i' \) from pairwise independence of \(g_\ell \) and \(Y_{i'} \) is independent of \(g_\ell(i) \) and \(g_\ell(i') \).
Analysis

\[Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]. \text{ And } \mathbb{E}[Z_\ell] = x_i. \]
Analysis

\[Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] \]. And \(\mathbf{E}[Z_\ell] = x_i \).

\[\text{Var}(Z_\ell) = \mathbf{E}[(Z_\ell - x_i)^2] \]

\[= \mathbf{E} \left[\left(\sum_{i' \neq i} g_\ell(i) g_\ell(i') Y_{i'} x_{i'} \right)^2 \right] \]

\[= \mathbf{E} \left[\sum_{i' \neq i} x_{i'}^2 Y_{i'}^2 + \sum_{i' \neq i''} x_{i'} x_{i''} g_\ell(i') g_\ell(i'') Y_{i'} Y_{i''} \right] \]

\[= \sum_{i' \neq i} x_{i'}^2 \mathbf{E}[Y_{i'}^2] \frac{1}{\omega} \]

\[\leq \|x\|_2^2 / w. \]
\[\sum_{i=1}^{n} \frac{x_i}{\omega} \cdot \frac{1}{\omega} \]

\[\frac{1}{\omega} \sum_{i=1}^{n} \frac{x_i}{\omega} \]
Analysis

\[Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]. \]

We have seen: \(E[Z_\ell] = x_i \) and \(\text{Var}(Z_\ell) \leq \|x\|_2^2 / w. \)
Analysis

\(Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]. \)

We have seen: \(E[Z_\ell] = x_i \) and \(\text{Var}(Z_\ell) \leq \|x\|_2^2/w. \)

Using Chebyshev:

\[
\Pr[|Z_\ell - x_i| \geq \epsilon \|x\|_2] \leq \frac{\text{Var}(Z_\ell)}{\epsilon^2 \|x\|_2^2} \leq \frac{1}{\epsilon^2w} \leq 1/3.
\]
Analysis

\[Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] . \]

We have seen: \(E[Z_\ell] = x_i \) and \(\text{Var}(Z_\ell) \leq \|x\|_2^2 / w . \)

Using Chebyshev:

\[
\Pr[|Z_\ell - x_i| \geq \epsilon \|x\|_2] \leq \frac{\text{Var}(Z_\ell)}{\epsilon^2 \|x\|_2^2} \leq \frac{1}{\epsilon^2 w} \leq 1/3.
\]

Via the Chernoff bound,

\[
\Pr[\text{median}\{Z_1, \ldots, Z_d\} - x_i \geq \epsilon \|x\|_2] \leq e^{-cd} \leq \delta .
\]
Summarizing

Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $E[\tilde{x}_i] = x_i$ and $\Pr[|\tilde{x}_i - x_i| \geq \epsilon \|x\|_2] \leq \delta$.

Corollary

With $d = \Theta(\ln n)$ and $w = 3/\epsilon^2$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$: $|\tilde{x}_i - x_i| \leq \epsilon \|x\|_2$.

Total space: $O\left(\frac{1}{\epsilon^2} \log n\right)$ counters and hence $O\left(\frac{1}{\epsilon^2} \log n \log m\right)$ bits.