Richer model:

- Want to estimate a function of a vector $\mathbf{x} \in \mathbb{R}^n$ which is initially assume to be the all 0’s vector.

- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_j \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. (Δ_j can be positive or negative)
Models

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all 0's vector.
- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_j \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. (Δ_j can be positive or negative)

- $\Delta_j > 0$: *cash register* model. Special case is $\Delta_j = 1$.
- Δ_j arbitrary: *turnstile* model
- Δ_j arbitrary but $x \geq 0$ at all times: *strict turnstile* model
- *Sliding window* model: interested only in the last W items (window)
Frequent Items Problem

What is F_k when $k = \infty$?
Frequent Items Problem

What is F_k when $k = \infty$? Maximum frequency.
Frequent Items Problem

What is F_k when $k = \infty$? Maximum frequency.

F_∞ very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.
Frequent Items Problem

What is F_k when $k = \infty$? Maximum frequency.

F_∞ very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.
Frequent Items Problem

What is F_k when $k = \infty$? Maximum frequency.

F_∞ very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that $f_i > m/k$ for some fixed k.

Heavy hitters are very frequent items.
Majority element problem:

- Offline: given an array/list A of m integers, is there an element that occurs more than $m/2$ times in A?
- Streaming: is there an i such that $f_i > m/2$?
Finding Majority Element

Streaming-Majority:

\[c = 0, \ s \leftarrow \text{null} \]

While (stream is not empty) do

\[\text{If (} e_j = s \text{) do} \]

\[c \leftarrow c + 1 \]

\[\text{ElseIf (} c = 0 \text{)} \]

\[c = 1 \]

\[s = e_j \]

\[\text{Else} \]

\[c \leftarrow c - 1 \]

endWhile

Output \(s, c \)

Claim:
If there is a majority element \(i \) then algorithm outputs \(s = i \) and \(c \geq f_i - m / 2 \).

Caveat: Algorithm may output incorrect element if no majority element. Can verify correctness in a second pass.
Finding Majority Element

Streaming-Majority:

\[c = 0, \quad s \leftarrow \text{null} \]

While (stream is not empty) do

\hspace{1em} If \(e_j = s \) do

\hspace{2em} \(c \leftarrow c + 1 \)

\hspace{1em} ElseIf \(c = 0 \)

\hspace{2em} \(c = 1 \)

\hspace{2em} \(s = e_j \)

Else

\hspace{2em} \(c \leftarrow c - 1 \)

endWhile

Output \(s, c \)

Claim: If there is a majority element \(i \) then algorithm outputs \(s = i \) and \(c \geq f_i - m/2 \).
Finding Majority Element

Streaming-Majority:

\[c = 0, \ s \leftarrow \text{null} \]

While (stream is not empty) do

If \(e_j = s \) do

\[c \leftarrow c + 1 \]

ElseIf \(c = 0 \)

\[c = 1 \]

\[s = e_j \]

Else

\[c \leftarrow c - 1 \]

endWhile

Output \(s, c \)

Claim: If there is a majority element \(i \) then algorithm outputs \(s = i \) and \(c \geq f_i - m/2 \).

Caveat: Algorithm may output incorrect element if no majority element. Can verify correctness in a second pass.
Misra-Gries Algorithm

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

MisraGreis(k):

- D is an empty associative array
- While (stream is not empty) do
 - e_j is current item
 - If (e_j is in $keys(D)$)
 - $D[e_j] \leftarrow D[e_j] + 1$
 - Else if ($|keys(A)| < k - 1$) then
 - $D[e_j] \leftarrow 1$
 - Else
 - for each $\ell \in keys(D)$ do
 - $D[\ell] \leftarrow D[\ell] - 1$
 - Remove elements from D whose counter values are 0
- endWhile
- For each $i \in keys(D)$ set $\hat{f}_i = D[i]$
- For each $i \not\in keys(D)$ set $\hat{f}_i = 0$
Analysis

Space usage $O(k)$.

Theorem

For each $i \in [n]$: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Corollary

Any item with $f_i > \frac{m}{k}$ is in D at the end of the algorithm.

A second pass to verify can be used to verify correctness of elements in D.
Proof of Correctness

Theorem

For each $i \in [n]$: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.
Proof of Correctness

Theorem

For each \(i \in [n] \): \(f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i \).

Easy to see: \(\hat{f}_i \leq f_i \). Why?
Proof of Correctness

Theorem

For each $i \in [n]$: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Alternative view of algorithm:

- Maintains counts $C[i]$ for each i (initialized to 0). Only k are non-zero at any time.
- When new element e_j comes
 - If $C[e_j] > 0$ then increment $C[e_j]$
 - Elself less then k positive counters then set $C[e_j] = 1$
 - Else decrement all positive counters (exactly k of them)
- Output $\hat{f}_i = C[i]$ for each i
Proof of Correctness

Want to show: \(f_i - \hat{f}_i \leq m/(k + 1) \):

Suppose we have \(\ell \) occurrences of \(k \) counters being decremented. Then \(\ell k + \ell \leq m \) which implies \(\ell \leq m/(k + 1) \).

Consider \(\alpha = (f_i - \hat{f}_i) \) as items are processed. Initially 0. How big can it get?

If \(e_j = i \) and \(C[i] \) is incremented \(\alpha \) stays the same.

If \(e_j = i \) and \(C[i] \) is not incremented then \(\alpha \) increases by one and \(k \) counters decremented — charge to \(\ell \).

If \(e_j \neq i \) and \(\alpha \) increases by 1 it is because \(C[i] \) is decremented — charge to \(\ell \).

Hence total number of times \(\alpha \) increases is at most \(\ell \).
Proof of Correctness

Want to show: \(f_i - \hat{f}_i \leq \frac{m}{(k + 1)} \):

- Suppose we have \(\ell \) occurrences of \(k \) counters being decremented.
Proof of Correctness

Want to show: \(f_i - \hat{f}_i \leq m/(k + 1) \):

- Suppose we have \(\ell \) occurrences of \(k \) counters being decremented. Then \(\ell k + \ell \leq m \) which implies \(\ell \leq m/(k + 1) \).
- Consider \(\alpha = (f_i - \hat{f}_i) \) as items are processed. Initially 0. How big can it get?
Proof of Correctness

Want to show: \(f_i - \hat{f}_i \leq \frac{m}{(k + 1)} \):

- Suppose we have \(\ell \) occurrences of \(k \) counters being decremented. Then \(\ell k + \ell \leq m \) which implies \(\ell \leq \frac{m}{(k + 1)} \).
- Consider \(\alpha = (f_i - \hat{f}_i) \) as items are processed. Initially 0. How big can it get?
 - If \(e_j = i \) and \(C[i] \) is incremented \(\alpha \) stays same
Proof of Correctness

Want to show: $f_i - \hat{f}_i \leq m/(k + 1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k + 1)$.
- Consider $\alpha = (f_i - \hat{f}_i)$ as items are processed. Initially 0. How big can it get?
 - If $e_j = i$ and $C[i]$ is incremented α stays same
 - If $e_j = i$ and $C[i]$ is not incremented then α increases by one and k counters decremented — charge to ℓ

Hence total number of times α increases is at most ℓ.
Proof of Correctness

Want to show: $f_i - \hat{f}_i \leq m/(k + 1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq m/(k + 1)$.
- Consider $\alpha = (f_i - \hat{f}_i)$ as items are processed. Initially 0. How big can it get?
 - If $e_j = i$ and $C[i]$ is incremented α stays same
 - If $e_j = i$ and $C[i]$ is not incremented then α increases by one and k counters decremented — charge to ℓ
 - If $e_j \neq i$ and α increases by 1 it is because $C[i]$ is decremented — charge to ℓ
Proof of Correctness

Want to show: \(f_i - \hat{f}_i \leq m/(k + 1) \):

- Suppose we have \(\ell \) occurrences of \(k \) counters being decremented. Then \(\ell k + \ell \leq m \) which implies \(\ell \leq m/(k + 1) \).
- Consider \(\alpha = (f_i - \hat{f}_i) \) as items are processed. Initially 0. How big can it get?
 - If \(e_j = i \) and \(C[i] \) is incremented \(\alpha \) stays same
 - If \(e_j = i \) and \(C[i] \) is not incremented then \(\alpha \) increases by one and \(k \) counters decremented — charge to \(\ell \)
 - If \(e_j \neq i \) and \(\alpha \) increases by 1 it is because \(C[i] \) is decremented — charge to \(\ell \)
- Hence total number of times \(\alpha \) increases is at most \(\ell \).
Deterministic to Randomized Sketches

Cannot improve $O(k)$ space if one wants additive error of at most m/k. Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?
- Obtain a sketch that allows for deletions
- Additional applications of sketch based solutions
- Will see Count-Min and Count sketches
Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters.
- Suppose we pick $h : [n] \rightarrow [ck]$ for some $c > 1$.
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins).
- In ideal situation each bucket can be used to count a separate heavy hitter.