Frequency moments and Counting Distinct Elements

Lecture 05
September 8, 2020
Part I

Frequency Moments
Streaming model

- The input consists of \(m \) objects/items/tokens \(e_1, e_2, \ldots, e_m \) that are seen one by one by the algorithm.
- The algorithm has “limited” memory say for \(B \) tokens where \(B < m \) (often \(B \ll m \)) and hence cannot store all the input.
- Want to compute interesting functions over input.

Examples:

- Each token in a number from \([n]\)
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix
A fundamental class of problems

A fundamental class of problems

Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound)

Example: \(n = 5 \) and stream is \(4, 2, 4, 1, 1, 1, 4, 5 \)
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: $n = 5$ and stream is 4, 2, 4, 1, 1, 1, 4, 5.
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.

For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream.
Frequency Moments

- Stream consists of \(e_1, e_2, \ldots, e_m\) where each \(e_i\) is an integer in \([n]\). We know \(n\) in advance (or an upper bound)
- Given a stream let \(f_i\) denote the frequency of \(i\) or number of times \(i\) is seen in the stream. Consider vector \(f = (f_1, f_2, \ldots, f_n)\)
- For \(k \geq 0\) the \(k\)'th frequency moment \(F_k = \sum_i f_i^k\).

Important cases/regimes:
- \(k = 0\): \(F_0\) is simply the number of distinct elements in stream
- \(k = 1\): \(F_1\) is the length of stream which is easy
Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound).

Given a stream let \(f_i \) denote the frequency of \(i \) or number of times \(i \) is seen in the stream. Consider vector \(f = (f_1, f_2, \ldots, f_n) \).

For \(k \geq 0 \) the \(k \)'th frequency moment \(F_k = \sum_i f_i^k \).

Important cases/regimes:

- \(k = 0 \): \(F_0 \) is simply the number of distinct elements in stream.
- \(k = 1 \): \(F_1 \) is the length of stream which is easy.
- \(k = 2 \): \(F_2 \) is fundamental in many ways as we will see.
Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound)

- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector $f = (f_1, f_2, \ldots, f_n)$
- For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream
- $k = 1$: F_1 is the length of stream which is easy
- $k = 2$: F_2 is fundamental in many ways as we will see
- $k = \infty$: F_∞ is the maximum frequency (heavy hitters prob)
Stream consists of \(e_1, e_2, \ldots, e_m \) where each \(e_i \) is an integer in \([n]\). We know \(n \) in advance (or an upper bound)

Given a stream let \(f_i \) denote the frequency of \(i \) or number of times \(i \) is seen in the stream Consider vector \(f = (f_1, f_2, \ldots, f_n) \)

For \(k \geq 0 \) the \(k \)'th frequency moment \(F_k = \sum_i f_i^k \).

Important cases/regimes:

- \(k = 0 \): \(F_0 \) is simply the number of distinct elements in stream
- \(k = 1 \): \(F_1 \) is the length of stream which is easy
- \(k = 2 \): \(F_2 \) is fundamental in many ways as we will see
- \(k = \infty \): \(F_\infty \) is the maximum frequency (heavy hitters prob)
- \(0 < k < 1 \) and \(1 < k < 2 \)
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream. Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$.

Important cases/regimes:

- $k = 0$: F_0 is simply the number of distinct elements in stream.
- $k = 1$: F_1 is the length of stream which is easy.
- $k = 2$: F_2 is fundamental in many ways as we will see.
- $k = \infty$: F_∞ is the maximum frequency (heavy hitters prob).
- $0 < k < 1$ and $1 < k < 2$.
- $2 < k < \infty$.
Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?
Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k?
Frequency Moments: Questions

Estimation
Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling
Given a stream and k can we sample an item i in proportion to f_i^k?

Sketching
Given a stream and k can we create a *sketch/summary* of small size?
Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Questions easy if we have memory $\Omega(n)$: store f explicitly. Interesting when memory is $\ll n$. Ideally want to do it with $\log^c n$ memory for some fixed $c \geq 1$ ($\text{polylog}(n)$). Note that $\log n$ is roughly the memory required to store one token/number.
Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms.
Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1 \pm \epsilon)$-approximation or constant factor approximation
- and randomized algorithms
Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1 \pm \epsilon)$-approximation or constant factor approximation
- and randomized algorithms
Relative approximation

Let \(g(\sigma) \) be a real-valued non-negative function over streams \(\sigma \).

Definition

Let \(A(\sigma) \) be the real-valued output of a randomized streaming algorithm on stream \(\sigma \). We say that \(A \) provides an \((\alpha, \beta)\) relative approximation for a real-valued function \(g \) if for all \(\sigma \):

\[
\Pr \left[\left| \frac{A(\sigma)}{g(\sigma)} - 1 \right| > \alpha \right] \leq \beta.
\]

Our ideal goal is to obtain a \((\epsilon, \delta)\)-approximation for any given \(\epsilon, \delta \in (0, 1) \).
Additive approximation

Let $g(\sigma)$ be a real-valued function over streams σ. If $g(\sigma)$ can be negative, focus on additive approximation.

Definition

Let $A(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ. We say that A provides an (α, β) additive approximation for a real-valued function g if for all σ:

$$\Pr [|A(\sigma) - g(\sigma)| > \alpha] \leq \beta.$$

When working with additive approximations some normalization/scaling is typically necessary. Our ideal goal is to obtain a (ϵ, δ)-approximation for any given $\epsilon, \delta \in (0, 1)$.
Part II

Estimating Distinct Elements
Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?
Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution?
Distinct Elements

Given a stream \(\sigma \) how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure
Offline Solution

DistinctElements

Initialize dictionary D to be empty

$k ← 0$

While (stream is not empty) do

Let e be next item in stream

If ($e ∉ D$) then

Insert e into D

$k ← k + 1$

EndWhile

Output k
DistinctElements

Initialize dictionary \mathcal{D} to be empty

$k \leftarrow 0$

While (stream is not empty) do

Let e be next item in stream

If ($e \notin \mathcal{D}$) then

Insert e into \mathcal{D}

$k \leftarrow k + 1$

EndWhile

Output k

Which dictionary data structure?
Offline Solution

DistinctElements

Initialize dictionary D to be empty

$k ← 0$

While (stream is not empty) do

Let e be next item in stream

If ($e ∉ D$) then

Insert e into D

$k ← k + 1$

EndWhile

Output k

Which dictionary data structure?

- Binary search trees: space $O(k)$ and total time $O(m \log k)$
- Hashing: space $O(k)$ and expected time $O(m)$.
Hashing based idea

- Use hash function \(h : [n] \rightarrow [N] \) for some \(N \) polynomial in \(n \).
- Store only the minimum hash value seen. That is \(\min_{e_i} h(e_i) \).
 Need only \(O(\log n) \) bits since numbers are in range \([N]\).
Hashing based idea

- Use hash function \(h : [n] \rightarrow [N] \) for some \(N \) polynomial in \(n \).
- Store only the minimum hash value seen. That is \(\min_{e_i} h(e_i) \).
 Need only \(O(\log n) \) bits since numbers are in range \([N]\).

Question: why is this good?

- Assume *idealized* hash function: \(h : [n] \rightarrow [0, 1] \) that is fully random over the real interval
Hashing based idea

- Use hash function $h : [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is $\min_{e_i} h(e_i)$.
 Need only $O(\log n)$ bits since numbers are in range $[N]$.

Question: why is this good?

- Assume *idealized* hash function: $h : [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
Hashing based idea

- Use hash function \(h : [n] \rightarrow [N] \) for some \(N \) polynomial in \(n \).
- Store only the minimum hash value seen. That is \(\min_{e_i} h(e_i) \). Need only \(O(\log n) \) bits since numbers are in range \([N]\).

Question: why is this good?

- Assume *idealized* hash function: \(h : [n] \rightarrow [0, 1] \) that is fully random over the real interval.
- Suppose there are \(k \) distinct elements in the stream.
- What is the expected value of the minimum of hash values?
Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y] = \frac{1}{(k+1)}.$$
Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

DistinctElements

Assume ideal hash function $h : [n] \rightarrow [0, 1]$

$y \leftarrow 1$

While (stream is not empty) do

Let e be next item in stream

$y \leftarrow \min(y, h(e))$

EndWhile

Output $\frac{1}{y} - 1$
Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

$E[Y^2] = \frac{2}{(k+1)(k+2)}$ and $\text{Var}(Y) = \frac{k}{(k+1)^2(k+2)} \leq \frac{1}{(k+1)^2}$.

Analyzing idealized hash function
Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y] = \frac{1}{(k+1)}.$$

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformly distributed in $[0, 1]$ and let $Y = \min_i X_i$. Then

$$E[Y^2] = \frac{2}{(k+1)(k+2)} \quad \text{and} \quad \text{Var}(Y) = \frac{k}{(k+1)^2(k+2)} \leq \frac{1}{(k+1)^2}.$$
Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average h parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1 + \epsilon)$-approximation with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1 + \epsilon)$-approximation with probability $(1 - \delta)$
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h
2. Let $Z = \frac{1}{h}X_i$
3. Output $\frac{1}{Z} - 1$
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h

2. Let $Z = \frac{1}{h} X_i$

3. Output $\frac{1}{Z} - 1$

Claim: $E[Z] = \frac{1}{(k+1)}$ and $\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.
Averaging and reducing variance

1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h

2. Let $Z = \frac{1}{h} X_i$

3. Output $\frac{1}{Z} - 1$

Claim: $\mathbb{E}[Z] = \frac{1}{(k+1)}$ and $\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing $h = \frac{1}{(\eta\epsilon^2)}$ and using Chebyshev:

$\Pr\left[|Z - \frac{1}{k+1}| \geq \frac{\epsilon}{k+1} \right] \leq \eta$.

Hence

$\Pr\left[|(1/Z - 1) - k| \geq O(\epsilon/k) \right] \leq \eta$.

Repeat $O(\log \frac{1}{\delta})$ times and output median. Error probability < δ.

Chandra (UIUC)
1. Run basic estimator independently and in parallel h times to obtain X_1, X_2, \ldots, X_h

2. Let $Z = \frac{1}{h}X_i$

3. Output $\frac{1}{Z} - 1$

Claim: $\mathbb{E}[Z] = \frac{1}{(k+1)}$ and $\text{Var}(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing $h = 1/(\eta \epsilon^2)$ and using Chebyshev:

$\mathbb{P}\left[|Z - \frac{1}{k+1}| \geq \frac{\epsilon}{k+1}\right] \leq \eta$.

Hence $\mathbb{P}\left[|\left(\frac{1}{Z} - 1\right) - k| \geq O(\epsilon)k \leq \eta\right]$.
Averaging and reducing variance

1. Run basic estimator independently and in parallel \(h \) times to obtain \(X_1, X_2, \ldots, X_h \)
2. Let \(Z = \frac{1}{h} X_i \)
3. Output \(\frac{1}{Z} - 1 \)

Claim: \(E[Z] = \frac{1}{(k+1)} \) and \(Var(Z) \leq \frac{1}{h (k+1)^2} \).

Choosing \(h = 1/(\eta \epsilon^2) \) and using Chebyshev:
\[
\Pr \left[\left| Z - \frac{1}{k+1} \right| \geq \frac{\epsilon}{k+1} \right] \leq \eta.
\]
Hence \(\Pr \left[\left| \left(\frac{1}{Z} - 1 \right) - k \right| \right] \geq O(\epsilon)k \leq \eta. \)

Repeat \(O(\log 1/\delta) \) times and output median. Error probability \(< \delta \).
Algorithm via regular hashing

Do not have idealized hash function.

- Use $h : [n] \rightarrow [N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $h \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different trade offs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success