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Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: O(n + m) time algorithm.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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Graph of SCCs
AB C

DE F

G H

Graph G

B, E, F

G H

A, C, D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

1 Vertices are S1, S2, . . . Sk

2 There is an edge (Si, Sj) if there is some u ∈ Si and v ∈ Sj

such that (u, v) is an edge in G.
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Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of Grev is the same as the
reversal of GSCC.

Proof.
Exercise.
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SCCs and DAGs

Proposition

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should
be in the same SCC in G. Formal details: exercise.
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Part I

Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4
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Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.

Chandra & Lenny (UIUC) CS374 8 Spring 2015 8 / 53



Simple DAG Properties

1 Every DAG G has at least one source and at least one sink.

2 If G is a DAG if and only if Grev is a DAG.

3 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V, E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Proof.
⇒: Suppose G is not a DAG and has a topological ordering ≺. G
has a cycle C = u1, u2, . . . , uk, u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Continued.
⇐: Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.
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Topological Sort: An Example

1

2 3

4

Output:

1 2 3 4

Chandra & Lenny (UIUC) CS374 13 Spring 2015 13 / 53



Topological Sort: An Example

1

2 3

4

Output: 1

2 3 4

Chandra & Lenny (UIUC) CS374 13 Spring 2015 13 / 53



Topological Sort: An Example

1

2 3

4

Output: 1 2

3 4

Chandra & Lenny (UIUC) CS374 13 Spring 2015 13 / 53



Topological Sort: An Example

1

2 3

4

Output: 1 2 3

4

Chandra & Lenny (UIUC) CS374 13 Spring 2015 13 / 53



Topological Sort: An Example

1

2 3

4

Output: 1 2 3 4

Chandra & Lenny (UIUC) CS374 13 Spring 2015 13 / 53



Topological Sort: Another Example

a b c

d e

f g

h
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DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?

Chandra & Lenny (UIUC) CS374 15 Spring 2015 15 / 53



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
1 Compute DFS(G)
2 If there is a back edge then G is not a DAG.
3 Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.
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Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.
Assume post(v) > post(u) and (u, v) is an edge in G. We derive
a contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v. Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.
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Example

a b c

d e

f g

h
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Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.

Chandra & Lenny (UIUC) CS374 19 Spring 2015 19 / 53



Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi.
Therefore, (vi−1, vi) (or (vk, v1) if i = 1) is a back edge.

Chandra & Lenny (UIUC) CS374 19 Spring 2015 19 / 53



Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.

O(n + m) algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and recurse.

(B) Do DFS of G.
Compute post numbers.
Output vertices by decreasing post number.
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Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.

O(n + m) algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and recurse.

(B) Do DFS of G.
Compute post numbers.
Output vertices by decreasing post number.

Question
How to avoid sorting?
No need to sort - post numbering algorithm can output vertices...
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DAGs and Partial Orders

Definition
A partially ordered set is a set S along with a binary relation �
such that � is

1 reflexive (a � a for all a ∈ V),

2 anti-symmetric (a � b and a 6= b implies b 6� a), and

3 transitive (a � b and b � c implies a � c).

Example: For numbers in the plane define (x, y) � (x′, y′) iff
x ≤ x′ and y ≤ y′.
Observation: A finite partially ordered set is equivalent to a DAG.
(No equal elements.)

Observation: A topological sort of a DAG corresponds to a
complete (or total) ordering of the underlying partial order.
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What’s DAG but a sweet old fashioned notion
Who needs a DAG...

Example
1 V: set of n products (say, n different types of tablets).

2 Want to buy one of them, so you do market research...

3 Online reviews compare only pairs of them.
...Not everything compared to everything.

4 Given this partial information:
1 Decide what is the best product.
2 Decide what is the ordering of products from best to worst.
3 ...
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What DAGs got to do with it?
Or why we should care about DAGs

1 DAGs enable us to represent partial ordering information we
have about some set (very common situation in the real world).

2 Questions about DAGs:
1 Is a graph G a DAG?
⇐⇒
Is the partial ordering information we have so far is consistent?

2 Compute a topological ordering of a DAG.
⇐⇒
Find an a consistent ordering that agrees with our partial
information.

3 Find comparisons to do so DAG has a unique topological sort.
⇐⇒
Which elements to compare so that we have a consistent
ordering of the items.
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Part II

Linear time algorithm for finding all
strong connected components of a

directed graph
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Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)
Compute rch(Grev, u) using DFS(Grev, u)
SCC(G, u)⇐ rch(G, u) ∩ rch(Grev, u)
∀u ∈ SCC(G, u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?
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Structure of a Directed Graph
AB C

DE F

G H

Graph G

B, E, F

G H

A, C, D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2

3

4
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Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)

3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)

4 Therefore, total time O(n + m)!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!
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Find source/sink in a DAG using pre-numbers?

Given a DAG G, Consider a pre visit numbering of G using a DFS.
Which of the following options is correct?

(A) The vertex u with minimum pre(u) is a sink.

(B) The vertex u with minimum pre(u) is a source.

(C) The vertex u with maximum pre(u) is a sink.

(D) The vertex u with maximum pre(u) is a source.

(E) None of the above.
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Find source/sink in a DAG using post-numbers?

Given a DAG G, Consider a post visit numbering of G using a DFS.
Which of the following options is correct?

(A) The vertex u with minimum post(u) is a sink.

(B) The vertex u with minimum post(u) is a source.

(C) The vertex u with maximum post(u) is a sink.

(D) The vertex u with maximum post(u) is a source.

(E) None of the above.
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Post-visit times of SCCs

Definition
Given G and a SCC S of G, define post(S) = maxu∈S post(u)
where post numbers are with respect to some DFS(G).
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An Example

AB C

DE F

G H

Graph G

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

Graph with pre-post times for
DFS(A); black edges in tree

B, E, F

G H

A, C, D

11 16

5 9

Figure : GSCC with post times
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Graph of strong connected components
... and post-visit times

Proposition

If S and S′ are SCCs in G and (S, S′) is an edge in GSCC then
post(S) > post(S′).

Proof.
Let u be first vertex in S ∪ S′ that is visited.

1 If u ∈ S then all of S′ will be explored before DFS(u)
completes.

2 If u ∈ S′ then all of S′ will be explored before any of S.

A False Statement: If S and S′ are SCCs in G and (S, S′) is an edge
in GSCC then for every u ∈ S and u′ ∈ S′, post(u) > post(u′).
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Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological
ordering of GSCC

Recall: for a DAG, ordering nodes in decreasing post-visit order
gives a topological sort.

So...
DFS(G) gives some information on topological ordering of GSCC!
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Finding Sources

Proposition
The vertex u with the highest post visit time belongs to a source
SCC in GSCC

Proof.
1 post(SCC(u)) = post(u)

2 Thus, post(SCC(u)) is highest and will be output first in
topological ordering of GSCC.
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Finding Sinks

Proposition

The vertex u with highest post visit time in DFS(Grev) belongs to a
sink SCC of G.

Proof.
1 u belongs to source SCC of Grev

2 Since graph of SCCs of Grev is the reverse of GSCC, SCC(u) is
sink SCC of G.
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Linear Time Algorithm
...for computing the strong connected components in G

do DFS(Grev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Analysis

Running time is O(n + m). (Exercise)
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Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph Grev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering
of reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post
numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}
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Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}
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Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F, B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F, B, E}
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Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F, B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F, B, E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A, C, D}.

SCC computed:
{G}, {H}, {F, B, E}, {A, C, D}
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Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F, B, E}, {A, C, D}
Which is the correct answer!
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Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph
G = (V, E) show that the meta-graph GSCC can be obtained in
O(m + n) time.
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Correctness: more details

1 let S1, S2, . . . , Sk be strong components in G
2 Strong components of Grev and G are same and meta-graph of

G is reverse of meta-graph of Grev.
3 consider DFS(Grev) and let u1, u2, . . . , uk be such that

post(ui) = post(Si) = maxv∈Si
post(v).

4 Assume without loss of generality that
post(uk) > post(uk−1) ≥ . . . ≥ post(u1) (renumber
otherwise). Then Sk, Sk−1, . . . , S1 is a topological sort of
meta-graph of Grev and hence S1, S2, . . . , Sk is a topological
sort of the meta-graph of G.

5 uk has highest post number and DFS(uk) will explore all of Sk

which is a sink component in G.
6 After Sk is removed uk−1 has highest post number and

DFS(uk−1) will explore all of Sk−1 which is a sink component in
remaining graph G− Sk. Formal proof by induction.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

Is the problem solvable when G is strongly connected?

Is the problem solvable when G is a DAG?

If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph GSCC?
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Part III

An Application to make
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Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.
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make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them
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An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c
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makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c
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Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.
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Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.
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Take away Points

1 Given a directed graph G, its SCCs and the associated acyclic
meta-graph GSCC give a structural decomposition of G that
should be kept in mind.

2 There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

3 DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).
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