
Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

Caveat lector: This is the first edition of this lecture note. Please send bug reports and suggestions
to jeffe@illinois.edu.

Imagine a piano keyboard, eh, 88 keys, only 88 and yet, and yet, hundreds of new melodies, new
tunes, new harmonies are being composed upon hundreds of different keyboards every day in
Dorset alone. Our language, tiger, our language: hundreds of thousands of available words, frillions
of legitimate new ideas, so that I can say the following sentence and be utterly sure that nobody
has ever said it before in the history of human communication: “Hold the newsreader’s nose
squarely, waiter, or friendly milk will countermand my trousers.” Perfectly ordinary words,
but never before put in that precise order. A unique child delivered of a unique mother.

— Stephen Fry, A Bit of Fry and Laurie, Series 1, Episode 3 (1989)

2½ Context-Free Languages and Grammars

2½.1 Definitions

Intuitively, a language is regular if it can be built from individual strings by concatenation, union, and
repetition. In this note, we consider a wider class of context-free languages, which are languages that
can be built from individual strings by concatenation, union, and recursion.

Formally, a language is context-free if and only if it has a certain type of recursive description known
as a context-free grammar, which is a structure with the following components:

• A finite set Σ, whose elements are called symbols or terminals.

• A finite set Γ disjoint from Σ, whose elements are called non-terminals.

• A finite set R of production rules of the form A→ w, where A∈ Γ is a non-terminal and w ∈ (Σ∪Γ)∗

is a string of symbols and variables.

• A starting non-terminal, typically denoted S.

For example, the following eight production rules describe a context free grammar with terminals
Σ= {0,1} and non-terminals Γ = {S, A, B}:

S→ A A→ 0A B→ B1 C → ε
S→ B A→ 0C B→ C1 C → 0C1

Normally we write grammars more compactly by combining the right sides of all rules for each
non-terminal into one list, with alternatives separated by vertical bars.1 For example, the previous
grammar can be written more compactly as follows:

S→ A | B
A→ 0A | 0C

B→ B1 | C1
C → ε | 0C1

For the rest of this lecture, I will almost always use the following notational conventions.

1Yes, this means we now have three symbols ∪, +, and | with exactly the same meaning. Sigh.

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

• Monospaced digits (0, 1, 2, . . .), and symbols (�, $, #, •, . . .) are explicit terminals.

• Early lower-case Latin letters (a, b, c, . . .) represent unknown or arbitrary terminals in Σ.

• Upper-case Latin letters (A, B, C , . . .) and the letter S represent non-terminals in Γ .

• Late lower-case Latin letters (. . . , w, x , y, z) represent strings in (Σ∪ Γ)∗, whose characters could
be either terminals or non-terminals.

We can apply a production rule to a string in (Σ∪ Γ)∗ by replacing any instance of the non-terminal
on the left of the rule with the string on the right. More formally, for any strings x , y, z ∈ (Σ∪ Γ)∗ and
any non-terminal A∈ Γ , applying the production rule A→ y to the string xAz yields the string x yz. We
use the notation x Az x yz to describe this application. For example, we can apply the rule C → 0C1
to the string 00C1BAC0 in two different ways:

00C 1BAC0 000C11BAC0 00C1BAC 0 00C1BA0C10

More generally, for any strings x , z ∈ (Σ∪ Γ)∗, we say that z derives from x , written x ∗ z, if we
can transform x into z by applying a finite sequence of production rules, or more formally, if either

• x = z, or

• x y and y ∗ z for some string y ∈ (Σ∪ Γ)∗.

Straightforward definition-chasing implies that, for any strings w, x , y, z ∈ (σ ∪ γ)∗, if x ∗ y, then
wxz ∗ wyz.

The language L(w) of any string w ∈ (Σ∪ Γ)∗ is the set of all strings in Σ∗ that derive from w:

L(w) := {x ∈ Σ∗ | w ∗ x} .

The language generated by a context-free grammar G, denoted L(G), is the language of its starting
non-terminal. Finally, a language is context-free if it is generated by some context-free grammar.

Context-free grammars are sometimes used to model natural languages. In this context, the symbols
are words, and the strings in the languages are sentences. For example, the following grammar describes
a simple subset of English sentences. (Here I diverge from the usual notation conventions. Strings in
〈angle brackets〉 are non-terminals, and regular strings are terminals.)

〈sentence〉 → 〈noun phrase〉〈verb phrase〉〈noun phrase〉
〈noun phrase〉 → 〈adjective phrase〉〈noun〉
〈adj. phrase〉 → 〈article〉 | 〈possessive〉 | 〈adjective phrase〉〈adjective〉
〈verb phrase〉 → 〈verb〉 | 〈adverb〉〈verb phrase〉

〈noun〉 → dog | trousers | daughter | nose | homework | time lord | pony | · · ·
〈article〉 → the | a | some | every | that | · · ·

〈possessive〉 → 〈noun phrase〉’s |my | your | his | her | · · ·
〈adjective〉 → friendly | furious |moist | green | severed | timey-wimey | little | · · ·

〈verb〉 → ate | found | wrote | killed |mangled | saved | invented | broke | · · ·
〈adverb〉 → squarely | incompetently | barely | sort of | awkwardly | totally | · · ·

2

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

2½.2 Parse Trees

It is often useful to visualize derivations of strings in L(G) using a parse tree. The parse tree for a string
w ∈ L(G) is a rooted ordered tree where

• Each leaf is labeled with a terminal or the empty string ε. Concatenating these in order from left
to right yields the string w.

• Each internal node is labeled with a non-terminal. In particular, the root is labeled with the start
non-terminal S.

• For each internal node v, there is a production rule A→ω where A is the label of v and the symbols
in ω are the labels of the children of v in order from left to right.

In other words, the production rules of the grammar describe template trees that can be assembled into
larger parse trees. For example, the simple grammar on the previous page has the following templates,
one for each production rule:

S

A

S

B

A

A0

A

C0

B

1B

B

1C

C

ε

C

1C0

The same grammar gives us the following parse tree for the string 000011:

S

A

A

C

1C

1C

ε

0

0

0

0

Our more complicated “English” grammar gives us parse trees like the following:

〈sentence〉

〈noun phrase〉

〈noun〉

trousers

〈adj. phrase〉

〈posessive〉

’s〈noun phrase〉

〈noun〉

dog

〈adj. phrase〉

〈possessive〉

my

〈verb phrase〉

〈verb phrase〉

〈verb〉

mangled

〈adverb〉

barely

〈noun phrase〉

〈noun〉

time lord

〈adj. phrase〉

〈adjective〉

green

〈adj. phrase〉

〈adjective〉

furious

〈adj. phrase〉

〈posessive〉

your

Any parse tree that contains at least one node with more than one non-terminal child corresponds to
several different derivations. For example, when deriving an “English” sentence, we have a choice of

3

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

whether to expand the first 〈noun phrase〉 (“your furious green time lord”) before or after the second
(“my dog’s trousers”).

A string w is ambiguous with respect to a grammar if there is more than one parse tree for w, and a
grammar G is ambiguous is some string is ambiguous with respect to G. Neither of the previous example
grammars is ambiguous. However, the grammar S→ 1 | S+S is ambiguous, because the string 1+1+1+1

has five different parse trees:

S

S

1

+S

S

1

+S

S

1

+S

1

S

S

1

+S

S

S

1

+S

1

+S

1

S

S

S

1

+S

1

+S

S

1

+S

1

S

S

S

1

+S

S

1

+S

1

+S

1

S

S

S

S

1

+S

1

+S

1

+S

1

A context-free language L is inherently ambiguous if every context-free grammar that generates L
is ambiguous. The language generated by the previous grammar (the regular language (1+)∗1) is not
inherently ambiguous, because the unambiguous grammar S→ 1 | 1+S generates the same language.

2½.3 From Grammar to Language

Let’s figure out the language generated by our first example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1.

Since the production rules for non-terminal C do not refer to any other non-terminal, let’s begin by
figuring out L(C). After playing around with the smaller grammar C → ε | 0C1 for a few seconds, you
can probably guess that its language is {ε,01,0011,000111, . . .}, that is, the set all of strings of the form
0n1n for some integer n. For example, we can derive the string 00001111 from the start non-terminal S
using the following derivation:

C 0C1 00C11 000C111 0000C1111 0000ε1111= 00001111

The same derivation can be viewed as the following parse tree:

C

1C

1C

1C

1C

ε

0

0

0

0

In fact, it is not hard to prove by induction that L(C) = {0n1n | n ≥ 0} as follows. As usual when we
prove that two sets X and Y are equal, the proof has two stages: one stage to prove X ⊆ Y , the other to
prove Y ⊆ X .

• First we prove that C ∗ 0n1n for every non-negative integer n.

Fix an arbitrary non-negative integer n. Assume that C ∗ 0k1k for every non-negative integer
k < n. There are two cases to consider.

4

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

– If n= 0, then 0n1n = ε. The rule C → ε implies that C ε and therefore C ∗ ε.
– Suppose n> 0. The inductive hypothesis implies that C ∗ 0n−11n−1. Thus, the rule C → 0C1

implies that C 0C1 ∗ 0(0n−11n−1)1= 0n1n.

In both cases, we conclude that that C ∗ 0n1n, as claimed.

• Next we prove that for every string w ∈ Σ∗ such that C ∗ w, we have w = 0n1n for some
non-negative integer n.

Fix an arbitrary string w such that C ∗ w. Assume that for any string x such that |x |< |w| and
C ∗ x , we have x = 0k1k for some non-negative integer k. There are two cases to consider, one
for each production rule.

– If w= ε, then w= 0010.

– Suppose w = 0x1 for some string x such that C ∗ x . Because |x | = |w| − 2 < |w|, the
inductive hypothesis implies that x = 0k1k for some integer k. Then we have w= 0k+11k+1.

In both cases, we conclude that that w= 0n1n for some non-negative integer n, as claimed.

The first proof uses induction on strings, following the boilerplate proposed in the previous lecture; in
particular, the case analysis mirrors the recursive definition of “string”. The second proof uses structural
induction on the grammar; the case analysis mirrors the recursive definition of the language of S, as
described by the production rules. In both proofs, the inductive hypothesis is “Assume there is no smaller
counterexample.”

Similar analysis implies that L(A) = {0m1n | m > n} and L(B) = {0m1n | m < n}, and therefore
L(S) = {0m1n | m 6= n}.

2½.4 More Examples

Give three or four examples of simple but interesting context-free grammars. Some possibilities:
• Same number of 0s and 1s
• Different number of 0s and 1s
• Palindromes
• Balanced parentheses
• Arithmetic/algebraic expressions
• Regular expressions

ÆÆÆ

2½.5 Regular Languages are Context-Free

The following inductive argument proves that every regular language is also a context-free language.
Let L be an arbitrary regular language, encoded by some regular expression R. Assume that any regular
expression shorter than R represents a context-free language. (“Assume no smaller counterexample.”)
We construct a context-free grammar for L as follows. There are several cases to consider.

• Suppose L is empty. Then L is generated by the trivial grammar S→ S.

• Suppose L = {w} for some string w ∈ Σ∗. Then L is generated by the grammar S→ w.

• Suppose L is the union of some regular languages L1 and L2. The inductive hypothesis implies that
L1 and L2 are context-free. Let G1 be a context-free language for L1 with starting non-terminal S1,
and let G2 be a context-free language for L2 with starting non-terminal S2, where the non-terminal
sets in G1 and G2 are disjoint. Then L = L1 ∪ L2 is generated by the production rule S→ S1 | S2.

5

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

• Suppose L is the concatenation of some regular languages L1 and L2. The inductive hypothesis
implies that L1 and L2 are context-free. Let G1 be a context-free language for L1 with starting
non-terminal S1, and let G2 be a context-free language for L2 with starting non-terminal S2, where
the non-terminal sets in G1 and G2 are disjoint. Then L = L1 L2 is generated by the production
rule S→ S1S2.

• Suppose L is the Kleene closure of some regular language L1. The inductive hypothesis implies
that L1 is context-free. Let G1 be a context-free language for L1 with starting non-terminal S1.
Then L = L∗1 is generated by the production rule S→ ε | S1S.

In every case, we have found a context-free grammar that generates L, which means L is context-free.
In the next lecture note, we will prove that the context-free language {0n1n | n≥ 0} is not regular.

(In fact, this is the canonical example of a non-regular language.) Thus, context-free grammars are strictly
more expressive than regular expressions.

2½.6 Not Every Language is Context-Free

Again, you may be tempted to conjecture that every language is context-free, but a variant of our earlier
cardinality argument implies that this is not the case.

Any context-free grammar over the alphabet Σ can be encoded as a string over the alphabet Σ∪ Γ ∪
{ 3,→,|,$}, where $ indicates the end of the production rules for each non-terminal. For example, our
example grammar

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

can be encoded as the string

S→A|B$A→0A|0C$B→B1|C1$C→ 3|0C1$

We can further encode any such string as a binary string by associating each symbol in the set Σ∪ Γ ∪
{ 3,→,|,$} with a different binary substring. Specifically, if we encode each of the grammar symbols
3,→,|,$ as a string of the form 11∗0, each terminal in Σ as a string of the form 011∗0, and each non-

terminal as a string of the form 0011∗0, we can unambiguously recover the grammar from the encoding.
For example, applying the code

37→ 10 0 7→ 010 S 7→ 0010

→ 7→ 110 1 7→ 0110 A 7→ 00110

| 7→ 1110 B 7→ 001110

$ 7→ 11110 C 7→ 0011110

transforms our example grammar into the 135-bit string

00101100011011100011101111000110

11001000110111001000111101111000

11101100011100110111000111100110

11110001111011010111001000111100

1011110.

Adding a 1 to the start of this bit string gives us the binary encoding of the integer

51115 617766 581763 757672 062401 233529 937502.

6

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

Our construction guarantees that two different context-free grammars over the same language
(ignoring changing the names of the non-terminals) yield different positive integers. Thus, the set of
context-free grammars over any alphabet is at most as large as the set of integers, and is therefore
countably infinite. (Most integers are not encodings of context-free grammars, but that only helps us.) It
follows that the set of all context-free languages over any fixed alphabet is also countably infinite. But
we already showed that the set of all languages over any alphabet is uncountably infinite. So almost all
languages are non-context-free!

Although we will probably not see them in this course, there are techniques for proving that certain
languages are not context-free, just as there are for proving certain languages are not regular. In particular,
the {0n1n0n | n ≥ 0} is not context-free. (In fact, this is the canonical example of a non-context-free
language.)

2½.7 Chomsky Normal Form?

For many algorithmic problems involving context-free grammars, it is helpful to consider grammars with
a particular special structure called Chomsky normal form, abbreviated CNF:

• The starting non-terminal S does not appear on the right side of any production rule.

• The starting non-terminal S may have the production rule S→ ε.

• The right side of every other production rule is either a single terminal symbol or a string of exactly
two non-terminals—that is, every other production rule has the form A→ BC or A→ a.

A particularly attractive feature of CNF grammars is that they yield full binary parse trees; in particular,
every parse tree for a string of length n> 0 has exactly 2n− 1 non-terminal nodes. Consequently, any
string of length n in the language of a CNF grammar can be derived in exactly 2n− 1 production steps.
It follows that we can actually determine whether a string belongs to the language of a CNF grammar by
brute-force consideration of all possible derivations of the appropriate length.

For arbitrary context-free grammars, there is no similar upper bound on the length of a derivation,
and therefore no similar brute-force membership algorithm, because the grammar may contain additional
ε-productions of the form A→ ε and/or unit productions of the form A→ B, where both A and B are
non-terminals. Unit productions introduce nodes of degree 1 into any parse tree, and ε-productions
introduce leaves that do not contribute to the word being parsed.

Fortunately, it is possible to determine membership in the language of an arbitrary context-free
grammar, thanks to the following theorem. Two context-free grammars are equivalent if they define the
same language.

Every context-free grammar is equivalent to a grammar in Chomsky normal form.

To be more specific, define the total length of a context-free grammar to be the number of symbols
needed to write down the grammar; up to constant factors, the total length is the sum of the lengths of
the production rules.

Theorem 2½.1. Every context-free grammar with total length L can be mechanically converted into an
equivalent grammar in Chomsky normal form with total length O(L2) in O(L2) time.

Converting an arbitrary grammar into Chomsky normal form is a complex task. Fortunately, for most
applications of context-free grammars, it’s enough to know that the algorithm exists. For the sake of
completeness, however, I will describe one such conversion algorithm here. This algorithm consists
of several relatively straightforward stages. Efficient implementation of some of these stages requires
standard graph-traversal algorithms, which we will describe much later in the course.

7

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

0. Add a new starting non-terminal. Add a new non-terminal S′ and a production rule S′→ S, where
S is the starting non-terminal for the given grammar. S′ will be the starting non-terminal for the resulting
CNF grammar. (In fact, this step is necessary only when S ∗ ε, but at this point in the conversion
process, we don’t yet know whether that’s true.)

1. Decompose long production rules. For each production rule A→ω whose right side w has length
greater than two, add new production rules of length two that still permit the derivation A ∗ ω.
Specifically, suppose ω = αχ for some symbol α ∈ Σ∪ Γ and string χ ∈ (Σ∪ Γ)∗. The algorithm replaces
A→ω with two new production rules A→ αB and B→ χ, where B is a new non-terminal, and then (if
necessary) recursively decomposes the production rule B→ χ. For example, we would replace the long
production rule A→ 0BC1CB with the following sequence of short production rules, where each Ai is a
new non-terminal:

A→ 0A1 A1→ BA2 A2→ CA3 A3→ 1A4 A4→ CB

This stage can significantly increase the number of non-terminals and production rules, but it increases
the total length of all production rules by at most a small constant factor.2 The running time of this stage
is O(L).

2. Identify nullable non-terminals. A non-terminal A is nullable if and only if A ∗ ε. The recursive
definition of ∗ implies that A is nullable if and only if the grammar contains a production rule A→ω
where ω consists entirely of nullable non-terminals (in particular, if ω = ε). You may be tempted to
transform this recursive characterization directly into a recursive algorithm, but this is a bad idea; the
resulting algorithm would fall into an infinite loop if (for example) the same non-terminal appeared
on both sides of the same production rule. Instead, we apply the following fixed-point algorithm,
which repeatedly scans through the entire grammar until a complete scan discovers no new nullable
non-terminals.

NULLABLES(Σ, Γ , R, S):
Γε ←∅ 〈〈known nullable non-terminals〉〉
done← FALSE

while ¬done
done← TRUE

for each non-terminal A∈ Γ \ Γε
for each production rule A→ω

if ω ∈ Γ∗ε
add A to Γε
done← FALSE

return Γε

At this point in the conversion algorithm, if S′ is not identified as nullable, then we can safely remove
it from the grammar and use the original starting nonterminal S instead.

As written, NULLABLES runs in O(nL) = O(L2) time, where n is the number of non-terminals in Γ .
Each iteration of the main loop except the last adds at least one non-terminal to Γε, so the algorithm

2In most textbook descriptions of this conversion algorithm, this stage is performed last, after removing ε-productions and
unit productions. But with the stages in that traditional order, removing ε-productions could exponentially increase the length
of the grammar in the worst case! Consider the production rule A→ (BC)k, where B is nullable but C is not. Decomposing this
rule first and then removing ε-productions introduces about 3k new rules; whereas, removing ε-productions first introduces 2k

new rules, most of which then must then be further decomposed.

8

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

halts after at most n+ 1≤ L iterations, and in each iteration, we examine at most L production rules.
There is a faster implementation of NULLABLES that runs in O(n+ L) = O(L) time,3 but since other parts
of the conversion algorithm already require O(L2) time, we needn’t bother.

3. Eliminate ε-productions. First, remove every production rule of the form A→ ε. Then for each
production rule A→ w, add all possible new production rules of the form A→ w′, where w′ is a non-empty
string obtained from w by removing one nullable non-terminal. For example, if if the grammar contained
the production rule A→ BC , where B and C are both nullable, we would add two new production rules
A→ B | C . (Adding these productions may increase the size of the grammar exponentially!) Finally, if S′

was identified as nullable in the previous stage, add the production rule S′ → ε; this will be the only
ε-production in the final grammar. This phase of the conversion runs in O(L) time and at most triples
the number of production rules.

4. Merge equivalent non-terminals. We say that two non-terminals A and B are equivalent if they
can be derived from each other: A ∗ B and B ∗ A. Because we have already removed ε-productions,
any such derivation must consist entirely of unit productions. For example, in the grammar

S→ B | C , A→ B | D | CC | 0, B→ C | AD | 1, C → A | DA, D→ BA | CS,

non-terminals A, B, C are all equivalent, but S is not in that equivalence class (because we cannot derive S
from A) and neither is D (because we cannot derive A from D).

Construct a directed graph G whose vertices are the non-terminals and whose edges correspond to
unit productions, in O(L) time. Then two non-terminals are equivalent if and only if they are in the
same strong component of G. Compute the strong components of G in O(L) time using, for example,
the algorithm of Kosaraju and Sharir. Then merge all the non-terminals in each equivalence class into a
single non-terminal. Finally, remove any unit productions of the form A→ A. The total running time for
this phase is O(L). Starting with our example grammar above, merging B and C with A and removing
the production A→ A gives us the simpler grammar

S→ A, A→ AA | D | DA | 0 | 1, D→ AA | AS.

We could further simplify the grammar by merging all non-terminals reachable from S using only unit
productions (in this case, merging non-terminals S and S), but this further simplification is unnecessary.

5. Remove unit productions. Once again, we construct a directed graph G whose vertices are the non-
terminals and whose edges correspond to unit productions, in O(L) time. Because no two non-terminals
are equivalent, G is acyclic. Thus, using topological sort, we can index the non-terminals A1, A2, . . . , An
such that for every unit production Ai → A j we have i < j, again in O(L) time; moreover, we can assume
that the starting non-terminal is A1. (In fact, both the dag G and the linear ordering of non-terminals
was already computed in the previous phase!!)

Then for each index j in decreasing order, for each unit production Ai → A j and each production
A j →ω, we add a new production rule Ai →ω. At this point, all unit productions are redundant and
can be removed. Applying this algorithm to our example grammar above gives us the grammar

S→ AA | AS | DA | 0 | 1, A→ AA | AS | DA | 0 | 1, D→ AA | AS.

3Consider the bipartite graph whose vertices correspond to non-terminals and the right sides of production rules, with one
edge per rule. The faster algorithm is a modified breadth-first search of this graph, starting at the vertex representing ε.

9

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

In the worst case, each production rule for An is copied to each of the other n− 1 non-terminals.
Thus, this phase runs in Θ(nL) = O(L2) time and increases the length of the grammar to Θ(nL) = O(L2)
in the worst case.

This phase dominates the running time of the CNF conversion algorithm. Unlike previous phases, no
faster algorithm for removing unit transformations is known! There are grammars of length L with unit
productions such that any equivalent grammar without unit productions has length Ω(L1.499999) (for any
desired number of 9s), but this lower bound does not rule out the possibility of an algorithm that runs in
only O(L3/2) time. Closing the gap between Ω(L3/2−ε) and O(L2) has been an open problem since the
early 1980s.

6. Protect terminals. Finally, for each terminal a ∈ Σ, we introduce a new non-terminal Aa and a new
production rule Aa→ a, and then replace a with Aa in every production rule of length 2. This completes
the conversion to Chomsky normal form. As claimed, the total running time of the algorithm is O(L2),
and the total length of the output grammar is also O(L2).

CNF Conversion Example

As a running example, let’s apply these stages one at a time to our first example grammar.

S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

0. Add a new starting non-terminal S′.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0C1

1. Decompose the long production rule C → 0C1.

S′→ S S→ A | B A→ 0A | 0C B→ B1 | C1 C → ε | 0D D→ C1

2. Identify C as the only nullable non-terminal. Because S′ is not nullable, remove the production
rule S′→ S.

3. Eliminate the ε-production C → ε.

S→ A | B A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1

4. No two non-terminals are equivalent, so there’s nothing to merge.

5. Remove the unit productions S′→ S, S→ A, and S→ B.

S→ 0A | 0C | B1 | C1 | 0 | 1 A→ 0A | 0C | 0 B→ B1 | C1 | 1 C → 0D D→ C1 | 1.

6. Finally, protect the terminals 0 and 1 to obtain the final CNF grammar.

S→ EA | EC | BF | C F | 0 | 1

A→ EA | EC | 0

B→ BF | C F | 1

C → ED

D→ C F | 1
E→ 0

F → 1

10

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

Exercises

1. Describe context-free grammars that generate each of the following languages. The function
#(x , w) returns the number of occurrences of the substring x in the string w. For example,
#(0,101001) = 3 and #(010,1010100011) = 2.

(a) All strings in {0,1}∗ whose length is divisible by 5.

(b) All strings in {0,1}∗ representing a non-negative multiple of 5 in binary.

(c) {w ∈ {0,1}∗ | #(0, w) = #(1, w)}
(d) {w ∈ {0,1}∗ | #(0, w) 6= #(1, w)}
(e) {w ∈ {0,1}∗ | #(00, w) = #(11, w)}
(f) {w ∈ {0,1}∗ | #(01, w) = #(10, w)}
(g) {w ∈ {0,1}∗ | #(0, w) = #(1, w) and |w| is a multiple of 3}
(h) {0,1}∗ \ {0n1n | n≥ 0}
(i) {0n12n | n≥ 0}
(j) {0,1}∗ \ {0n12n | n≥ 0}
(k) {0n1m | 0≤ 2m≤ n< 3m}
(l) {0i1 j2i+ j | i, j ≥ 0}

(m) {0i1 j2k | i = j or j = k}
(n) {0i1 j2k | i 6= j or j 6= k}
(o) {0i1 j0 j1i | i, j ≥ 0}
(p)
�

w$0#(0,w)
�

� w ∈ {0,1}∗
	

(q) {x y | x , y ∈ {0,1}∗ and x 6= y and |x |= |y|}
(r)
�

x$yR
�

� x , y ∈ {0,1}∗ and x 6= y
	

(s) {x$y | x , y ∈ {0,1}∗ and #(0, x) = #(1, y)}
(t) {0,1}∗ \ {ww | w ∈ {0,1}∗}
(u) All strings in {0,1}∗ that are not palindromes.

(v) All strings in {(,), �}∗ in which the parentheses are balanced and the symbol � appears at
most four times. For example, ()(()) and (��(()()�)()())� and ��� are strings in this
language, but)(() and (���)�� are not.

2. Prove that if L is a context-free language, then LR is also a context-free language. [Hint: How do
you reverse a context-free grammar?]

3. Consider a generalization of context-free grammars that allows any regular expression over Σ∪ Γ
to appear on the right side of a production rule. Without loss of generality, for each non-terminal
A∈ Γ , the generalized grammar contains a single regular expression R(A). To apply a production
rule to a string, we replace any non-terminal A with an arbitrary word in the language described
by R(A). As usual, the language of the generalized grammar is the set of all strings that can be
derived from its start non-terminal.

11

Algorithms Lecture 2½: Context-Free Languages and Grammars [Fa’14]

For example:, the following generalized context-free grammar describes the language of all
regular expressions over the alphabet {0,1}:

S→ (T+)∗T + Ø (Regular expressions)

T → 3+ F∗F (Terms = summable expressions)

F → (0+ 1+ (S))(*+ ε) (Factors = concatenable expressions)

Here is a parse tree for the regular expression 0+1(10*1+01*0)*10* (which represents the set of
all binary numbers divisible by 3):

S

T

F

*0

F

1

F

*)S

T

F

0

F

*1

F

0

+T

F

1

F

*0

F

1

(

F

1

+T

0

Prove that every generalized context-free grammar describes a context-free language. In other
words, show that allowing regular expressions to appear in production rules does not increase the
expressive power of context-free grammars.

12

	Context-Free Languages and Grammars
	Definitions
	Parse Trees
	From Grammar to Language
	More Examples
	Regular Languages are Context-Free
	Not Every Language is Context-Free
	Chomsky Normal Form

